

Time Complexity Enhancement for α-Stack

Algorithm

By

Wasim Saeed E. Alaghbari

Supervisor

Prof. Ghaleb Al-Gaphari

A thesis submitted in partial fulfillment of the requirements for

master’s degree of Information Technology.

2019

1441

Republic of Yemen
Ministry of High Education

and Scientific Research
University of Modern Sciences
Deanship of Graduate Studies

Information Technology Program

ii

ُ ٱلهذِيهَ ءَامَنوُاْ مِنكُمۡ وَٱلهذِيهَ أوُتوُاْ يزَۡفعَِ) ٱللَّه

ت ُ بمَِا تعَۡمَلوُنَ خَبيِزٞ ٱلۡعِلۡمَ دَرَجََٰ (١١وَٱللَّه
 المجادلة

iii

Dedication

I dedicate this thesis to two special women in my life who
supported me to get to what I am. "For my mother and my wife."

iv

Acknowledgment

In the first place I am thankful to God almighty praise be to him for
fulfilling this humble effort for the sake of his satisfaction.

Then I’d like to thank my advisor, Prof. Ghaleb Al-Gaphari, for his

help, support, and valuable remarks. In addition, I would like to
thank my committee members for their efforts.

Also, I would like to thank the Department of Information

Technology, at University of Modern Sciences, for all the support,
cooperation, and guidance I received while pursuing my master
degree.

Finally, I would like to thank my family for their unlimited patience

and unconditional fondness.

v

 الـمـلـخــص

ارزمية الدمج واحد من اشير الخوارزميات المنتشرة في تقنية الترتيب، الإ أنيا تعاني تعتبر خو
من بعض المشاكل اىميا الزمن المستغرق في تنفيذ الخوارزمية.وكنتيجة ليذه المشكمة، طورت
العديد من الخوارزميات التي حسنت في زمن تنفيذ الخوارزمية وبالاخص عندما تكون البيانات

 α-stack) ستاك-ألفا خوارزميةقاً)الحالة المثالية(. من ىذه التحسينات، مرتبة ساب
algorithm(التي تعتمد عمى دمج التراتيب الجزئية الموجودة في البيانات والمسماة)Runs) .

استطاعت أن تحسن في اداء خوارزمية الترتيب ستاك-ألفاوعمى الرغم من أن خوارزمية
ستاك -الأصمية وحل مشكمة الترتيب في الحالة المثالية الا أن القصور واضح في خوارزمية ألفا

 عند تطبيقيا في البرمجة المتوازية وكذلك عند تعامميا مع البيانات العشوائية)الحالة الاسوء(.

(والتي اخذت DRSديدة اسميناىا تقسيم التراتيب)في ىذه الدراسة، قمنا بتطوير خوارزمية ج
بالاضافة الى مميزات خوارزمية الدمج الاصمية. استطاعت ستاك-مميزات خوارزمية ألفا

قدرتيا ىخوارزمية تقسيم التراتيب أن تقمل من الزمن المستخدم في عممية الترتيب بالإضافة ال
 .عمى التعامل مع البرمجة المتوازية بكفائو عالية

وقد اظيرت النتائج الأفضمية لخوارزمية تقسيم التراتيب مقارنة بالخوارزميات المختارة في
عندما كانت البيانات عشوائية بشكل –المقارنة حيث وصمة نسبة التحسين في زمن التنفيذ

 % في البرمجة المتوازية.03% في البرمجة المتسمسمة و نسبة 03إلى -كامل

vi

Abstract

One of the most popular sort algorithms is Merge sort, although it
suffers from some problems, the main problem of which is time
complexity. For this reason, many algorithms were developed to
enhance merge sort time complexity, especially in the best case.
One of the natural merge sort algorithms enhancement is α-stack
sort algorithm which has better performance than original merge sort
and overcomes the merge sort best case problem. However, merge
sort is still a powerful algorithm in parallel processing and external
sort. In this study, a new version of merge sort called Divide-Runs
Sort (DRS) algorithm is developed. The DRS algorithm takes
advantage of original merge sort and α-stack sort algorithm. The
DRS reduces time complexity of original merge sort and α-stack
sort algorithm and it overcomes a parallel processing problem in α-
stack sort algorithm and the best case problem in merge sort. The
results show noticeable enhancement in time complexity -when
dataset is random- comparing with benchmarks which reaches to
30% in sequential processing and 39% in parallel processing.
Keywords: Sorting, Merge sort, Adaptive sort, Natural merge sort,

parallel sorting, α-stack sort.

vii

List of abbreviations

Abbreviation Meaning
CPU Central Processing Unit
GPU Graphics Processing Unit
GNU Gnu's Not Unix
RAM Random Access Memory
MCSTL Multi-Core Standard Template Library
TPL Task Parallel Library
LSD Least Significant Digit
MSD Most Significant Digit
DRS Divide-Runs Sort algorithm
2D Two-Dimension Array

viii

List of Figures

Figure 1: Merge sort Example ... 16
Figure 2: Stack and Merge Runs in Timsort .. 19
Figure 3: Elements (pointed to by blue arrow) are compared and the smaller element is moved
to its final position (pointed to by red arrow). .. 21
Figure 4: All red elements are smaller than blue (here, 21).Thus they can be moved in a
chunk to the final array. ... 21
Figure 5: Statues of stack .. 23
Figure 6: Parallel merge sort with 8 threads ... 27
Figure 7 : Divide-Runs Model ... 34
Figure 8: Find Runs Flowchart .. 36
Figure 9: Divide-Runs algorithm Example .. 38
Figure 10: Divide Runs Flowchart .. 39
Figure 11: Merge two sorted array Flowchart .. 39
Figure 12: Parallel merge sort with 8 threads .. 42
Figure 13: Parallel Divide-Runs sort with 8 threads .. 43
Figure 14: Sorting time comparisons (Random Elements) .. 63
Figure 15: Sorting time comparisons (Sorted Elements) ... 64
Figure 16: Sorting time comparisons (10 Runs) ... 65
Figure 17: Sorting time comparisons (100 Runs) ... 65
Figure 18: Sorting time comparisons (1000 Runs) .. 66
Figure 19: Parallel Sorting time comparisons (Random Elements) 67
Figure 20: Parallel sorting time comparisons (Sorted Elements) 68
Figure 21: Sequential Sorting time comparisons (Random 1M to 10M Elements) 71
Figure 22: Sequential Sorting time comparisons (Sorted 1M to 10M Elements) 72
Figure 23: Sequential Sorting time comparisons (10Runs 1M to 10M Elements) 72
Figure 24: Sequential Sorting time comparisons (100Runs 1M to 10M Elements) 72
Figure 25: Sequential Sorting time comparisons (1000Runs 1M to 10M Elements) 72

file:///C:/MyProject/ssd/Master%20Thesis/Final%20Thesis/Time%20Complexity%20Enhancement%20for%20α-Stack%20Algorithm01.docx%23_Toc32679434
file:///C:/MyProject/ssd/Master%20Thesis/Final%20Thesis/Time%20Complexity%20Enhancement%20for%20α-Stack%20Algorithm01.docx%23_Toc32679440
file:///C:/MyProject/ssd/Master%20Thesis/Final%20Thesis/Time%20Complexity%20Enhancement%20for%20α-Stack%20Algorithm01.docx%23_Toc32679441
file:///C:/MyProject/ssd/Master%20Thesis/Final%20Thesis/Time%20Complexity%20Enhancement%20for%20α-Stack%20Algorithm01.docx%23_Toc32679443
file:///C:/MyProject/ssd/Master%20Thesis/Final%20Thesis/Time%20Complexity%20Enhancement%20for%20α-Stack%20Algorithm01.docx%23_Toc32679444

ix

Figure 26: Parallel Sorting time comparisons (Random 1M to 10M Elements) 73
Figure 27: Parallel Sorting time comparisons (Sorted 1M to 10M Elements) 73
Figure 28: Sequential Sorting time comparisons (Random Elements 50 Samples) 73
Figure 29: Sequential Sorting time comparisons (Sorted Elements 50 Samples) 74
Figure 30: Sequential Sorting time comparisons (10Runs Elements 50 Samples) 74
Figure 31: Sequential Sorting time comparisons (100Runs Elements 50 Samples) 74
Figure 32: Sequential Sorting time comparisons (1000Runs Elements 50 Samples) 74
Figure 33: Parallel Sorting time comparisons (Random Elements 50 Samples) 75
Figure 34: Parallel Sorting time comparisons (Sorted Elements 50 Samples) 75
Figure 35: Sequential Sorting time comparisons (Random Elements with α=2) 87
Figure 36: Sequential Sorting time comparisons (Sorted Elements with α=2) 87
Figure 37: Sequential Sorting time comparisons (10Runs Elements with α=2) 87
Figure 38: Sequential Sorting time comparisons (100Runs Elements with α=2) 88
Figure 39: Sequential Sorting time comparisons (1000Runs Elements with α=2) 88
Figure 40: Parallel Sorting time comparisons (Random Elements with α=2) 88

x

List of Tables

Table 1: Sort algorithms and its classification .. 13
Table 2: Comparing between TimSort and α-Stack algorithms 23
Table 3: COMPARING BETWEEN TIMSORT, Α-STACK, AND DRS ALGORITHMS 62
Table 4: Compare between Merge sort and DRS ... 66
Table 5: Sequential Sorting time comparisons (Random 10M Elements) 69
Table 6: Sequential Sorting time comparisons (Sorted 10M Elements) 69
Table 7: Sequential Sorting time comparisons (10Runs with 10M Elements) 69
Table 8: Sequential Sorting time comparisons (100Runs with 10M Elements) 70
Table 9: Sequential Sorting time comparisons (1000Runs with 10M Elements) 70
Table 10: Parallel Sorting time comparisons (Random 10M Elements) 70
Table 11: Parallel Sorting time comparisons (Sorted 10M Elements) 71
Table 12 : Sequential Sorting time comparisons (Random Elements) 83
Table 13 : Sequential Sorting time comparisons (Sorted Elements) 84
Table 14: Sequential Sorting time comparisons (10 Runs) ... 84
Table 15: Sequential Sorting time comparisons (100 Runs) .. 85
Table 16: Sequential Sorting time comparisons (1000 Runs) .. 85
Table 17: Parallel Sorting time comparisons (Random Elements) 86
Table 18: Parallel Sorting time comparisons (Sorted Elements) 86

xi

Contents

Dedication ... iii

Acknowledgment .. iv

 v .. الـمـمـخــص

Abstract ... vi

List of abbreviations ... vii

List of Figures ... viii

List of Tables .. x

Contents .. xi

1. Introduction ... 1

1.1. Motivation ... 1

1.2. Problem Statement .. 2

1.3. Research Objectives .. 3

1.4. Research Methodology ... 3

1.5. Scope of the Study.. 4

1.6. Benchmark Selection ... 4

1.7. Contributions ... 5

1.8. Thesis Organization ... 5

2. Literature Review and Related Work ... 6

2.1. Sort Algorithms .. 6

2.2. Factors affecting the Classification of Sort Algorithms ... 7

2.2.1. Time Complexity ... 8

2.2.2. Space Complexity .. 9

xii

2.2.3. Stability ... 10

2.2.4. Comparison and Non-Comparison Based Algorithms 10

2.2.5. Recursive and Non-Recursive .. 11

2.2.6. Internal Sort Vs External Sort ... 11

2.2.7. Adaptability .. 12

2.3. Survey of Sorting Algorithms .. 13

2.3.1. Bubble sort .. 14

2.3.2. Selection sort ... 14

2.3.3. Insertion sort .. 14

2.3.4. Merge Sort .. 15

2.3.5. TimSort ... 18

2.3.6. α-Stack sort .. 22

2.3.7. Quick Sort ... 24

2.3.8. Radix Sort ... 24

2.4. Parallel sorting ... 25

2.4.1. Parallel Merge Sort .. 26

2.4.2. Bitonic Sort .. 28

2.4.3. Sample Sort ... 29

2.4.4. Radix Sort ... 30

3. Proposed DRS Algorithm .. 31

3.1. Design Sequential DRS Algorithm ... 32

3.1.1. Divide and Conquer technique .. 32

3.1.2. Runs .. 32

3.1.3. Divide-Runs Model .. 33

3.1.4. Divide-Runs sort algorithm Design .. 34

3.2. Design Parallel DRS Algorithm ... 40

xiii

3.2.1 . Design Parallel Algorithm ... 40

3.3. Analysis Algorithm ... 44

3.3.1. Worse case ... 44

3.3.2. Best case .. 46

3.3.3. Average case ... 47

3.4. Sequential DRS Algorithm Implementation ... 47

3.5. Parallel DRS Algorithm Implementation... 56

3.6. Advantages and disadvantages .. 59

3.5.1. Advantages of DRS ... 59

3.5.2. Disadvantages of DRS .. 59

4. Experiment and Result Analysis ... 60

4.1. Experiment Setting .. 60

4.2. Performance Metrics .. 61

4.3. Result Evaluation .. 62

4.3.1 Sequential experiment ... 62

4.3.2 Parallel Experiment ... 66

4.3.3 Additional Experiments .. 68

5. Conclusion and Future work .. 76

5.1. Conclusion .. 76

5.2. Future work ... 77

References ... 78

Appendix A .. 83

Additional Tables and Graphs .. 83

Appendix B .. 89

Sequential Divide-Runs Algorithm Code ... 89

Appendix C .. 97

xiv

Parallel Divide-Runs Algorithm Code ... 97

1

1. Introduction

This Chapter explores the motivation of study and problem
statement. In addition, other sections will be described such as,
objectives, methodology, benchmark selection, and others.

1.1.Motivation

Merge sort and its modifications are very important algorithms in
sorting. They are found in many fields of science such as Database,
distributed systems, operating systems, and others [1] [2] [3]. One
of Merge sort versions has been Python's standard sorting algorithm,
and it is also used to sort arrays of non-primitive type in Java SE 7,
on the Android platform, and in GNU Octave [4]. Although there are
many versions of merge algorithms, sorting problem has attracted a
great deal of research because efficient sorting is important to
optimize the use of other algorithms and to save wasted time [5].
Moreover, parallel computers are appearing on our desktops. The

advent of multi-core causes a major change in our approach to
software. Parallel sort algorithms are highly useful in processing
huge volumes of data in quick time. For this reason, the need of

2

parallel sort algorithms is very important, especially when parallel
sort algorithm is difficult to implement [6] [7].

1.2.Problem Statement

Since the recursive sort algorithms cannot recognize the nature of
input data, it cannot decide whether these input data are sorted or
not. For this reason, the algorithm would have poor performance
especially in the best case. Such drawbacks in the original merge
sort motivate many researchers to start modification of the original
merge sort such as [8] [9] [4].These modifications which are called
natural merge sort algorithms take place based on the concept of
the existing order of the input called Runs.
Unfortunately, these algorithms including α-stack sort algorithm

suffer from some problem:
 The way of merge Runs management.

α-stack sort algorithm uses stack to manage Runs and finds
efficient ways to merge them. Stack effects badly on
algorithms because of the time for managing stack.

 Difficulty of α-stack sort algorithm parallelization.
Since the size of unsorted set is decreasing with every
iteration, it is difficult to parallelize sort algorithms that use
iteration [6].

3

1.3. Research Objectives

The main objectives of this study are :

1. To design a new sort algorithm called DRS algorithm based on
original merge sort algorithm and α-stack sort algorithm.

2. To implement DRS algorithm in terms of sequential process as
well as parallel process.

1.4.Research Methodology

Different methodologies have been used in this study as the
following:

 Literature Review

 Building a model
A new model designed based on existing merge sort
algorithms and its modifications.

 Setting up an experiment

 Analysis of experiment results and measuring performance.
This study was evaluated empirically using MS visual studio
C#. Quantitative data has been measured in terms of
execution time. Many different scenarios have been tested in
different dataset size.

4

1.5.Scope of the Study

The scope of this study is to develop a new sort algorithm which
reduces time complexity in α-stack sort algorithm rather than space
complexity and save wasted time in managing Runs.
In parallel processing, we will choose a well-known model and

apply our proposed algorithm on it. Chosen model will be modified
according to needs on proposed algorithm.

1.6.Benchmark Selection

Timsort algorithm [9] is a popular and standard algorithm for many
platform and programing languages. On the other hand, α-stack
algorithm [8] is one of new versions of natural merge sort. Buss and
Knop [4] introduce new stable natural merge sort algorithms and
compared these algorithms with Timsort algorithm and α-stack
algorithm. Therefore, Timsort and α-stack algorithms have been
chosen to be the benchmark of this study.
On the other hand, Uyar claimed that [6] parallel processing is

difficult to apply on iteration sort algorithm and recursive algorithm
are better choices. For the best of our knowledge, Merge sort is
one of the powerful algorithms in parallel sorting; therefore, it has
been selected to be the benchmark in parallel processing. We

5

applied the same model that is implemented in parallel Sort method
of java.utils.Arrays class of Java Library on both algorithms.
DRS algorithm will be compared with benchmarks in terms of

execution time.

1.7.Contributions

This study proposes a new natural merge sort algorithm, which
was developed base on original and natural merge sort. In
sequential processing, a new model has been designed to take
advantage of divide and conquer technique as well as Runs. The
main contribution is developing a new natural merge sort which
reduces time complexity in natural merge sort and apply on
sequential and parallel processing.
The new algorithm shows promising results compared to

benchmarks –in random dataset- which reaches to 30% in
sequential processing and 39% in parallel processing.
1.8.Thesis Organization

The rest of this study is organized in 4 chapters. Chapter 2 is
dedicated to literature review and related work. Sequential and
implementation of parallel proposed algorithm are explored in
chapter 3. In Chapter 4, analysis and performance measure are

6

described. Finally, summary and conclusion are in Chapter 5.

2. Literature Review and Related Work

In this chapter, main concepts of sorting such as classification of
sort algorithms and well-known sort algorithms were discussed.
This concepts help readers and beginners to gain overall views of
sorting techniques. Some sort algorithms in terms of sequential and
parallel processing were discussed. Merge sort and some of its
modification were discussed intensively.
2.1.Sort Algorithms

One of the most popular and important techniques in computer
science is sorting. It is a permutation function, which operates on
elements [10]. Sorting algorithms are found in many places in
computer science. We can find sort applications in operating
systems [11], database systems [2], image processing applications
[3], programming languages, data communications, pattern matching
[12], business applications, and applications that use large
databases may benefit from efficient sorting algorithms. For
example, computational biology, and search engines are privileged

7

fields that need sorting in the geographic information system
[13].Also, it plays an important role in teaching of algorithm analysis,
data structure and programming [14].
For consequences, many algorithms have been developed. There

are many different sorting algorithms and even more ways in which
they can be implemented [15].Some algorithms work perfectly on
number. Some can be implemented in parallel processing whereas
other work only on sequential process. Each algorithm has its
advantages and disadvantages. For example, Merge sort is well-
known to perform very well in most practical situations, regardless
of the fact that many other sorting algorithms have a better best-
case behavior. For Many years, Researchers show big interest in
developed and enhanced sort algorithm. In addition, with evaluation
of multi-core processes, researchers apply sort algorithms and
design them to work in parallel.

2.2. Factors affecting the Classification of Sort Algorithms

Sorting algorithms can be classified with various factors [15].
These classifications end up being important factors for
programmers when they are writing a sorting algorithm or choosing
which one to implement. In this section we’ll focus on most
important factors.

8

2.2.1.Time Complexity

The main factor and easiest way that classifies the sorting
algorithm is time complexity or computational complexity. In general,
it related to how much time an algorithm need to sort dataset. The
time complexity analysis is a theoretical process to categorize the
algorithm into a relative order among function by predicting and
calculating approximately the increase in running time of an
algorithm as its input size increases. For instance a program can
take seconds, hours or even years to complete the execution,
usually this depends upon the particular algorithm used to construct
the program [15] [16]. To ensure the execution time of an algorithm
should anticipate the worst case, average case and best case
performance of an algorithm.

 Worse case: The worst-case analysis is the greatest amount
of running time that an algorithm needed to solve a problem
for any input of size n. The worst-case running time of an
algorithm gives us an upper bound on the computational
complexity.

 Best case: The best-case analysis is the least amount of

9

running time that an algorithm needs to solve a problem for
any input of size n. In this the running time of an algorithm
gives us a lower bound on the computational complexity. In
most algorithms’ analysis of the best case not consider
because it is not useful. However, in sort technique, it
considers as advantage or disadvantage for sort algorithm.

 Average case: The average case analysis is the average
amount of running time that an algorithm needed to solve a
problem for any input of size n. It is difficult to determine
average case for algorithm. In general, the average case
running time is considered as bad as the worst case and
analysis as same way as the worst case.

2.2.2.Space Complexity

Space complexity of an algorithm is another factor that considers
seriously when selecting an algorithm. There are two types of
classifications for the space complexity of an algorithm: in-place or
out-of-place.
An in-place algorithm is one that operates directly on the input

data. The danger with this is that the data is getting completely
transformed in the process of transforming it, which means that the
original dataset is effectively being destroyed! However, it is more
space-efficient, because the algorithm only needs a tiny bit of extra

10

space in memory — usually a constant amount of space, or O(1) —
 which can be helpful if you don’t have enough memory to spare.
In contrast, out-of-place algorithms don’t operate directly on the

original dataset; instead, the make a new copy, and perform the
sorting on the copied data. This can be safer, but the drawback is
that the algorithm’s memory usage grows with input size [17].

2.2.3.Stability

A stable algorithm is one that preserves the relative order of the
elements; if the keys are the same, we can guarantee that the
elements will be ordered in the same way in the list as they
appeared before they were sorted [15]. For instance if there are two
elements a[0] and a[1] with the same value and with a[0] show up
before a[1] in the unsorted list, a[0] will also show up before a[1] in
the sorted list.

2.2.4.Comparison and Non-Comparison Based Algorithms

 It’s possible to classify a sorting algorithm based on how it
actually does the job of sorting elements. Any sorting algorithm that
compares two items  -or a pair - at a time in the process of sorting
through a larger dataset is referred to as a comparison sort. This
subset of algorithms use some type of comparator (for example: >=

11

or <=) to determine which of any two elements should be sorted
first [17].
Sorting algorithms that do not use any type of comparators to do

their sorting are referred to as non-comparison sorts [17].

2.2.5.Recursive and Non-Recursive

A recursive algorithm means it calls itself with smaller input values,
and which obtains the result for the current input by applying simple
operations to the returned value for the smaller input. Usually the
problem can be solved utilizing solutions to smaller variants of the
same problem, and the smaller variants reduce to easily solvable
instance, then one can use a recursive algorithm to solve that
problem. Quick sort and merge sort are examples for recursive
algorithms while insertion sort and selection are non-recursive since
it does not follow these steps [15].

2.2.6.Internal Sort Vs External Sort

Because our machines can sort through large datasets fairly easily,
it’s common to have some applications that have to sort through
huge collections of data. In some cases, this can actually amount to
more data than can be maintained in the machine’s main memory
(or RAM).The way that an algorithm has to store data while its

12

sorting through records is yet another way that we can classify
sorting algorithms.
If all of the data that needs to be sorted can be kept in main

memory, the algorithm is an internal sorting algorithm. However, if
the records have to be stored outside of main memory —in other
words, stored in external memory, in either a disk or a tape  — the
algorithm is referred to as an external sorting algorithm [17].

2.2.7.Adaptability

Whether or not the pre-sorted of the input affects the running time.
Adaptive sort takes advantage of the existing order of the input to
try to achieve better times, so that the time taken by the algorithm
to sort is a smoothly growing function of the size of the
sequence and the disorder in the sequence. In other words, the
more presorted the input is, the faster it should be sorted.
Algorithms that take this into account are known to be adaptive [18].

The following table depict from [19] which shows some sort

algorithms and its classification

13

Table 1: Sort algorithms and its classification

2.3. Survey of Sorting Algorithms

Because the importance of sort technique, many algorithms had
been designed. Many literatures have been describe sorting
algorithms like [12] [15] [20] [21] [22]. In this section, main and
popular algorithms discuss.

 Time Complexity

 Best Worst Avg. Space Recursiv
e

adaptive

Co

mp
ar

iso
n

So
rt

Bubble Sort O(n) O(n^2) O(n^2) O(1) No Yes
Selection Sort O(n^2) O(n^2) O(n^2) O(1) No Yes
Insertion Sort O(n) O(n^2) O(n^2) O(1) No Yes
Quick Sort O(n.lg(n)) O(n^2) O(n.lg(n)) O(1) Yes No

Randomized
Quick Sort O(n.lg(n)) O(n.lg(n)) O(n.lg(n)) O(1) Yes

No

Merge Sort O(n.lg(n)) O(n.lg(n)) O(n.lg(n)) O(n) Yes No
Tim Sort O(n) O(n.lg(n)) O(n.lg(n)) O(n) No Yes

Heap Sort O(n.lg(n)) O(n.lg(n)) O(n.lg(n)) O(1) No No

No
n-

Co
mp

ar
iso

n
so

rt Counting Sort O(n+k) O(n+k) O(n+k) O(n+2^k) No No

Radix Sort O(n.k/s) O(2^s.n.k/s) O(n.k/s) O(n) No No

Bucket Sort O(n.k) O(n^2.k) O(n.k) O(n.k) No
No

14

2.3.1. Bubble sort

Bubble sort is the simplest and popular sort algorithm. It compares
two consecutive elements and swaps them if needed. This process
continue until no need for swapping [12] [21] [22].

2.3.2. Selection sort

Selection sort is another well-known sorting technique that scans

the list/array to find the smallest item, puts it at the first location in
the list/array, and then scans the list for the second smallest item,
puts it in the second location, then third smallest and so forth until
reaches the largest item in the list putting it at the last location of
the list. It has O(n²) complexity, inefficient for the larger lists or
arrays [23].

2.3.3. Insertion sort

Insertion sort is a simple and efficient sorting algorithm useful for
small lists and mostly sorted list. It works by inserting each element
into its appropriate position in the final sorted list. For each insertion
it takes one element and finds the appropriate position in the sorted
list by comparing with neighboring elements and inserts it in that

15

position. This operation is repeated until the list becomes sorted in
the desired order. Insertion sort is an in- place algorithm and
needed only a constant amount of additional memory space. It
becomes more inefficient for the greater size of input data when
compared to other algorithms. However, in general insertion sort is
frequently used as a part of more sophisticated algorithms [15].

2.3.4. Merge Sort

Merge sort [24] [25] uses the divide and conquer approach to
solve a given problem. It works by splitting the unsorted array into n
sub array recursively until each sub array has 1 element. In general,
an array with one element is considered to be sorted. Consequently,
it merges each sub array to generate a final sorted array. The
divide and conquer approach works by dividing the array into two
halves such as sub array and follows the same step for each sub
array recursively until each sub array has 1 element. Later it
combines each sub array into a sorted array until there is only 1
sub array with desired order. Merge sort is a stable sort meaning
that it preserves the relative order of elements with equal key [15].
The figure1 show how merge sort works.

16

Mer
ge
sort
is
powe
rful
sort algorithm especially when working in parallel [26] [1], linked list,
and external sort [27]. The algorithm for Merge sort is as follows.

Algorithm 1: Merge-Sort (A ,p , r)

1 3 4 6 2 7 8 9

2 7 8 9 1 3 4 6

8 9 2 7 4 6 1 3

9 8 7 2 6 4 3 1

8 9 2 7 4 6 1 3

2 7 8 9 1 3 4 6

6 7 8 9 1 2 3 4

Figure 1: Merge sort Example

17

Merge sort suffers from two critical problems. First, it is not in-
place algorithm, which need more space or auxiliary array to help in
sort elements. These problem cost O(n) complexity in space
whereas space complexity is O(1) for others sort algorithms.
Nevertheless, in parallel and in external sort, auxiliary array give
merge sort powerful in sort elements. Second problems, merge sort
takes O(nlogn) complexity in all case even in best case. That mean,
if elements already sorted merge sort cannot recognized that.
Many version of merge sort algorithms developed to solve space

and time complexity. For Space Complexity, In-place Merge sort
algorithm first published by Kronrod [28] showing that merging is
possible without a workspace. After that, Trabb Pardo [29]
presented the first stable in-place merging algorithm. Later Salowe
and Steiger [30] observed an easy-to-correct error in the algorithm
of Kronrod and made some simplifications to stable merging.
According to the analysis of Pasanen [31], the algorithms developed
by Huang and Langston [32] [33] have the lowest complexity with

If p < r then
 q = (p + r) / 2
 Merge-Sort (A , p , q)
 Merge-Sort (A , q+1 , r)
 Merge (A , p , q , r)
End If

18

respect to the number of moves if a linear number of comparisons
is approved.
For best case problem, the widely used solution is natural merge

sort. It finds the sorted sub-lists by detecting consecutive runs of
entries in the input which are already in sorted order. Natural merge
sorts were first proposed by Knuth [12].There are many algorithms
which merging strategies combined with decomposition into Runs
such as TimSort [9],α-Stack sort [8], ShiversSort
[34],AugmentedShiversSort [4], AdaptiveShiversSort [35],
MinimalSort [36], PeekSort and PowerSort [37], NeatSort
[38],Patience sorting [39], melsort [40], Splitsort [41], and 2-merge
sort and α-merge sort [4].

2.3.5. TimSort

Timsort [9] is a hybrid stable sorting algorithm, derived from merge
sort and insertion sort, designed to perform well on many kinds of
real-world data. It uses techniques from Peter McIlroy [42] and
implemented by Tim Peters in 2002 for use in the Python
programming language. Timsort has been Python's standard sorting
algorithm since version 2.3, and it is also used to sort arrays of
non-primitive type in Java SE 7, on the Android platform, and in
GNU Octave [4]. Timsort has worst-case runtime O(n log n), but is
designed to run substantially faster on inputs which are partially

19

pre-sorted by using intelligent strategies to determine the order in
which merges are performed. It is quite a strongly engineered
algorithm, but its high-level principle is rather simple. The sequence
S to be sorted is decomposed into monotonic Runs (i.e., non-
increasing or non-decreasing subsequences of S), which are
merged pairwise according to some specific rules [8]. Concurrently
with the search for runs, the runs are merged with merge technique.
Except where Timsort tries to optimize for merging disjoint runs in
galloping mode, Runs are repeatedly merged two at a time, with the
only concerns being to maintain stability and merge balance [43].
Looking for balanced merges, Timsort considers three runs on the

top of the stack, X, Y, Z, and maintains the invariants as shown in
figure 2:

i. |Z| > |Y| + |X|
ii. |Y| > |X|

Figure 2: Stack and Merge Runs in Timsort

20

The runs are inserted in a stack. If |Z| ≤ |Y| + |X|, then X and Y
are merged and replaced on the stack. In this way, merging is
continued until all runs satisfy i. |Z| > |Y| + |X| and ii. |Y| > |X|.
Timsort performs an almost in-place merge sort, as actual in-

place merge sort implementations have a high overhead. First
Timsort performs a binary search to find the location in the first run
of the first element in the second run, and the location in the
second run of the last element in the first run.this call Individual
merges [43].
An individual merge keeps a count of consecutive elements

selected from the same input set. The algorithm switches to
galloping mode when this reaches the minimum galloping threshold
(min_gallop) in an attempt to capitalize on sub-runs in the data.
The success or failure of galloping is used to adjust min_gallop, as
an indication of whether the data does or does not contain sufficient
sub-runs [43].

http://www.wikiwand.com/en/Binary_search

21

Figure 3: Elements (pointed to by blue arrow) are compared and the smaller element is moved
to its final position (pointed to by red arrow).

When merging is done right-to-left, galloping starts from the right
end of the data, that is, the last element. Galloping from the
beginning also gives the required results, but makes more
comparisons [43].

Figure 4: All red elements are smaller than blue (here, 21).Thus they can be moved in a
chunk to the final array.

Galloping is not always efficient. In some cases galloping mode

22

requires more comparisons than a simple linear search. While for
the first few cases both modes may require the same number of
comparisons, over time galloping mode requires 33% more
comparisons than linear search to arrive at the same results [43].

2.3.6. α-Stack sort

One of the newest enhance on merge sort is an α-stack algorithm
[8] which enhanced TimSort by improving stack that hold Runs. It
consists in adding the runs one by one in a stack, and in performing
merges on the go according some rules. This rules are always local
as they only involve the runs at the top of the stack. A stack
strategy relies on a stack X of runs that is initially empty. During the
first stage, at each step, a run is extracted from R and added to the
stack. The stack is then updated, by merging runs, in order to
assure that some conditions on the top of the stack are satisfied.
These conditions and the way runs are merged when they are not
satisfied define the strategy. The second stage occurs when there is
no more run in R: the runs in X are then merged pairwise until only
one remains [8] .

23

Figure
5:

Statues
of stack

α-Stack Sort can be seen as a stack-merge algorithm of degree 2.
It depends on a fixed parameter α > 1, and consists only in one
rule which is |Y | > α |Z|. If it is violated, α consists in merging Y
and Z [8] .

The table2 depicts from [8] to show average of execution time
between α-stack and TimSort.

Table 2: Comparing between TimSort and α-Stack algorithms

Algorithm 2: Main Loop of α-StackSort
X=0
While R!=0 do
 R=pop(R)
 Append R to X
 While X violates the rule |Y|>=α|Z| do
 Merge Y and Z
 End While
End While

24

2.3.7. Quick Sort

Quick sort [21] [22] [44] is the fastest general purpose internal
sorting algorithm on the average among other sophisticated
algorithms. Unlike merge sort it does not require any additional
memory space for sorting an array. For the reason that it is widely
used in most real time application with large data sets. Quick sort
uses divide and conquer approach for solving problems. Quick sort
is quite similar to merge sort. It works by selecting elements from
unsorted array named as a pivot and split the array into two parts
called sub arrays and reconstruct the former part with the elements
smaller than the pivot and the latter with elements larger than the
pivot. This operation is called as partitioning. The algorithm repeats
this operation recursively for both the sub arrays. In general, the
leftmost or the rightmost element is selected as a pivot. Selecting
the left most and right most element as pivot was practiced in the
early version of quick sort and this causes the worst case behavior,
if the array is already sorted. Later it was solved by various
practices such as selecting a random pivot and taking the median of
first, middle and last elements. Quick sort is an in-place algorithm
and it works very well, even in a virtual memory environment [15].

2.3.8. Radix Sort

25

Radix sort [45] is a linear sorting algorithm and works without
comparing any element unlike other sorting methods such as
insertion sort and quick sort. Radix sort works by sorting data
elements with keys. Keys are usually represented in integers mostly
binary digits and sometimes it considers an alphabet as keys for
strings. Radix sort works by sorting each digit on the input element
and for each of the digits in that element. In general, it might start
with least significant digit and then followed by next significant digit
till the most significant digit. This process somewhat considered to
be unreasonable most of the time. Radix sort is a stable sort for the
reason that it preserves the relative order of element with equal
keys [15].
There are two classification of radix sort such as LSD and MSD.

The Least significant digit method works by processing the integer
representation starting from the least digit and shift in order to
obtain the most significant digit. Likewise the Most significant digit
works the opposite way [15].
2.4. Parallel sorting

Parallel sorting has been studied extensively during the past years.
Sorting is a difficult problem to parallelize. Since the size of
unsorted set is decreasing with every iteration, it is difficult to
parallelize it. The recursive sorting algorithms are better suited for
parallelization. They divide the unsorted data set into multiple

26

segments and work on them independently [6] .Parallel sorting
algorithms can be divided into two categories [46]:
 Partition-based Sorting: First, use partition keys to split the

data into disjoint buckets. Second, sort each bucket
independently, and then concatenate the sorted buckets.
 Merge-based Sorting: First, partition the input data into
data chunks of approximately equal size and sort these data
chunks in different processors. Second, merge the data across
all of the processors.

With evolution of Multi-core processing, Many sorting algorithms
have been develop to implement on parallel in GPU [13] [46] [26]
and CPU [1] [6].In this section, the most popular parallel sorting
algorithms discuss.
2.4.1. Parallel Merge Sort

A parallel merge sort algorithm proposed by Varman et al. [47]
and popularized by the developers of the GNU Multi-Core Standard
Template Library (MCSTL) [48]. In this algorithm, first the unsorted
array is divided by the number of threads and each partition is
sorted by one thread. Then all threads take part in merging the
sorted partitions. Parallel merging is a complex process. The
parallel version of the merge sort is shown at Figure 6 for four cores
as implemented in parallel Sort method of java.utils.Arrays class of
Java Library [6].

27

Figure 6: Parallel merge sort with 8 threads

It first divides the unsorted dataset recursively into two. This
process continues until the number of unsorted subsets reaches to
the number of cores in the system. Then, each core sorts one
unsorted subset independently in parallel. They may use any single
CPU sorting algorithm to sort their segments. Once, each thread is
done sorting their parts, the process of merging starts. Each parent
thread merges the two sorted subsections from its children threads.
As the final step, the root thread merges two subsections from its
children threads and produces the sorted dataset. In this algorithm,
all four cores are utilized fully when sorting their subsections.
However, when merging is performed, system utilization is reduced
significantly. Only two cores are used at the first round of merge
operations and the other two cores sit idle. In the final stage of the

28

merge operation, only one core is used and the other three cores sit
idle. As the number of cores increases in a system, the utilization of
cores is reduced even more during the merge operations. Therefore,
the primary objective of parallel merge sort algorithms has been to
try to distribute the load of merging among more cores [6].

2.4.2. Bitonic Sort
Bitonic Sort, a merge-based algorithm, was one of the earliest

procedures for parallel sorting. It was introduced in 1968 by Batcher
[49]. The basic idea behind Bitonic Sort is to sort the data by
merging bitonic sequences. A bitonic sequence increases
monotonically then decreases monotonically. Bitonic Sort can be
generalized for n/p > 1, with a complexity of Θ(n lg2 n). Adaptive
Bitonic Sorting, a modification of Bitonic Sort, avoids unnecessary
comparisons, which results in an improved, optimal complexity of
Θ(n lg n) [50].
The algorithm consists of two parts. First, the unsorted sequence

is built into a bitonic sequence; then, the series is split multiple
times into smaller sequences until the input is in sorted order. The
bitonic split is a procedure that cuts one bitonic sequence into two
smaller ones, where all the elements of the first sequence are less
than or equal to the ones in the second. Looking at the example
below, a bitonic sequence is divided between its two halves, and
the n th element in each part is compared with each other. If they

29

are out of order, they are swapped. Applying this procedure
repeatedly onto the smaller lists, the result is a sorted sequence in
ascending order [51].
Before the sorting can occur, the original sequence must first be

transformed into a bitonic one. Note that two numbers by
themselves are a bitonic sequence; from that, the sequence can be
partitioned into smaller bitonic ones and then merged together.
The building algorithm is a variation of the bitonic split: two

adjacent bitonic sequences are split and sorted in ascending order,
the next two in descending order, and so on. The original two
sequences are now a single bitonic sequence. This procedure
continues until the entirety of the input has been converted.

2.4.3. Sample Sort

Sample Sort is a popular and widely analyzed splitter-based
method for parallel sorting [52], [53]. This algorithm acquires a
sample of data of size s from each processor, then combines the
samples on a single processor. This processor then produces p−1
splitters from the sp-sized combined sample and broadcasts them
to all other processors. The splitters allow each processor to send
each key to the correct final destination immediately [54]. The
algorithm is simple and executes as follows.

i. Each processor sorts its local data.

30

ii. Each processor selects a sample vector of size p−1 from its
local data.

iii. The samples are sent to and merged on processor 0,
producing a combined sorted sample

iv. Processor 0 defines and broadcasts a vector of p−1 splitters
of the combined sorted sample.

v. Each processor sends its local data to the appropriate
destination processors, as defined by the splitters, in one
round of all-to-all communication.

vi. Each processor merges the data chunks it receives.

2.4.4. Radix Sort

Radix Sort is not a comparison-based sort. However, it can be
parallelized simply by assigning some subset of buckets to each
processor [55] [56].In addition, it can deal with uneven distributions
efficiently by assigning a varying number of buckets to all
processors every step. This number can be determined by having
each processor count how many of its keys will go to each bucket,
then summing up these histograms with a reduction. Once a
processor receives the combined histogram, it can adaptively assign
buckets to processors [54].

31

3. Proposed DRS Algorithm

This chapter describes different phases of the proposed algorithm
called DRS such as design algorithm and implementation in terms
of sequential and parallel processing. The proposed algorithm
named Divide-Runs sort algorithm (DRS) is developed based on
Divide and conquer technique as well as Runs. DRS takes
advantage of original merge sort as well as natural merge sort. With
the evaluation of multi-core processes, the advent of multi-core
caused a major change in our approach to software. DRS is one of
rare sort algorithm that can be applied on parallel processing, which
is highly useful in processing huge volumes of data in quick time.

32

3.1. Design Sequential DRS Algorithm

3.1.1.Divide and Conquer technique

Divide and conquer (D&C) is an algorithm design paradigm based
on multi-branched recursion. A divide and conquer algorithm works
by recursively breaking down a problem into two or more sub-
problems of the same type, until these become simple enough to be
solved directly. The solutions to the sub-problems are then
combined to give a solution to the original problem [57]. A typical
Divide and Conquer algorithm solves a problem using the following
three steps:
1. Divide: Break the problem into sub-problems of the same type.
2. Conquer: Recursively solve these sub-problems.
3. Combine: Combine the solution of sub-problems.

3.1.2. Runs

Run is sub-order elements in the input array. At the same time,
the order is non-descending or strictly descending, i.e. “a0 ≤ a1 ≤
a2 ≤ …» or «a0 > a1 > a2 > …”.
In some sort algorithms [8] [9] [4], sorting starts by looking for

Runs which gives advantages to sort algorithm to reduce time
complexity for sorting, especially if array is sorted or semi-sorted.

33

For example, for the following array

1 2 3 4 5 3 4 9 7 6 5 4 3 2 1

sorting algorithm starts by determining runs as follows

1 2 3 4 5 3 4 9 7 6 5 4 3 2 1
Run 1 Run 2 Run 3

N=15

Then, sorting operation works based on Runs which use merge
two sorted arrays.

3.1.3. Divide-Runs Model

As mentioned before, DRS is designed to take advantage of two
algorithms: first, Natural merge sort algorithms which decomposes
elements to Runs to solve the best case problem , second, original
Merge sort algorithm which uses divide-conquer technique. For
consequence, a new model was designed to combine advantages
of merge sort and natural merge sort. The figure 7 shows the
proposed model:

Get Data Elements

Decomposing

Elements to Runs

Allocate Runs to Helper

34

DRS model consists of five steps follows:
1. Get data elements to main array.
2. The elements are split into a run decomposition.
3. Runs allocate to Helper array to prepare for divide process.
4. Runs divide according Helper array.
5. Runs merge using merge technique.

3.1.4. Divide-Runs sort algorithm Design

First, Divide-Runs algorithm looks for runs in given array . Then
first and last index in runs are stored in Helper array. Helper array
contains two columns. The first column stores the first index of Run
and the second column stores for last index of Run. For example, if
we have an array with following elements:

Figure 7 : Divide-Runs Model

35

1 2 3 4 5 3 4 9 7 6 5 4 3 2 1
Run1 (1-5) Run2(6-8) Run3 (9-15)

N=15

This Given array contains 3 Runs ,The first one starts with index 1
and ends with index 5.The second starts with index 6 and ends with
index 8.The third run starts with index 9 and ends with index 15.
 All found Runs will be stored in 2-D array with 2 columns. The

first column contains first index and the second column contains last
index of the Run. This 2-D array is called Helper array.

First index Last index
1 5
6 8
9 15

If any Run is a reversed order, Reverse function will be called, For
example, Run 3 is a reversed array ,so it will be reversed to be

1 2 3 4 5 6 7
Run3 (9-15)

Reverse Runs can be done at merge time.
Figure 8 presents the flowchart of looking for runs process and

store Runs to Helper array.

36

Start

Input Elements

Put element in Run

End of Run

Put Run in Helper array

Run is

Descending

Order

Reverse Run

Yes

No

Yes

No

End of No

37

Figure 8: Find Runs Flowchart

After finding all Runs in the array and storing them in Helper array,
Divide and Conquer technique will apply on Helper array not like
merge sort algorithm which applies divide and conquer on all given
array.
Figure 9 shows how previous array will divide and merge

1 2 3 4 5 3 4 9 1 2 3 4 5 6 7
Run1 (1-5) Run2(6-8) Run3 (9-15)

1 2 3 4 5 3 4 9
Run1 (1-5) Run2(6-8)

1 2 3 4 5 6 7
Run3 (9-15)

3 4 9
Run2(6-8)

1 2 3 4 5
Run1 (1-5)

38

Figure 9: Divide-Runs algorithm Example

The following figure presents the flowchart for divide Runs using
Helper array.

1 2 3 3 4 4 5 9
Run1 (1-8)

1 1 2 2 3 3 3 4 4 4 5 5 6 7 9
Run1 (1-15)

No

Yes

No

Start

Input Elements

Find Runs & prepare

Helper Array

Divide Helper array

DividCount

<0

Divide Left

End

39

When divide Runs reaches to 1 run in divide left and divide right
process, merge two sorted array works.

The following figure presents the flowchart for merge algorithm.

No

No

No

Yes

Yes

Yes

Start

Input two Sorted
Array A, B

Define Merge array
C=A.len + B.Len

Head(A)<=

Head(B)
Put head(A)

to C
Put head(B)

to C

A empty B empty

Figure 10: Divide Runs Flowchart

40

3.2.Design Parallel DRS Algorithm

Sorting is a difficult problem to parallelize [6].Since the size of
unsorted set is decreasing with every iteration, it is difficult to
parallelize it. For example, it is difficult to parallelize insertion sort,
selection sort, and bubble sort. However, the better suited for
parallelization is a recursive sort algorithms.
Divide-Runs sort algorithm is a recursive algorithm that takes

advantage of divide and conquer recursively. It can apply on
parallel as efficient as merge sort.

3.2.1. Design Parallel Algorithm

The parallel version of the merge sort is shown in Figure 12 for
four cores as implemented in parallel Sort method of

41

java.
utils.
Array

s
class

of
Java
Libra
ry [6].

S’=1000

S’=500 S’=500

S’=250

S’=250

S’=250

S’=250

S=250

S=250

S=250

S=250

Sorting

42

Figure 12: Parallel merge sort with 8 threads

The same model will be use to design Parallel DRS algorithm with
change in finding Runs and creating Helper Array as shown in
Figure 13.

S=500

S=500

S=1000
MainThread

Thread1
Thread2
Thread3
Thread4
Thread5
Thread6

S’ Unsorted array
S Sorted array

S’=1000

43

Figu
re
13:
Par
allel
Divi
de-
Run
s

sort
with
8

thre
ads

In
thi
s

mo
del, Main CPU uses to call available CPUs to find Runs Using
parallel Processing. Then it merges founded Runs in one helper
array. After find Runs and create Helper array, Root CPU divides
the unsorted array into two sub-array than distributed them to two
CPUs. Every CPU divides sub-array to two sub-array. This
process continues until the number of unsorted sub-array reaches
to desire number of parallel. Then, each CPU sorts one unsorted
sub-array independently in parallel. Once, each CPU is done

Find Rs

Find Rs

Find Rs

Find Rs

Find Rs

Find Rs

R=100

R=50 R=50

R=25

R=25

R=25

R=25

R=1

R=1

R=1

R=1

R=1 R=1

S=1000
MainThread

Thread1
Thread2
Thread3
Thread4
Thread5
Thread6

Sorting

44

sorting their parts, the process of merging starts. Each parent CPU
merges the two sorted subsections from its children threads. As the
final step, the Root CPU merges two subsections from its children
threads and produces the sorted array.

3.3. Analysis Algorithm

To ensure the execution time of an algorithm, three cases should
be concerned.

3.3.1.Worse case

In DRS, the worst case appears when number of Runs reach
Maximum number in array. In Array with 10 elements, number of
Runs may be 1,2,3,4 ,or 5.No more Runs in array with 10 elements
than 5.This happened when all Runs have only two elements.
When Run have 2 elements the helper array contains n/2 Runs

For that, the length of Helper array m=n/2.

45

Divide-Runs Algorithm contains two parts FindRuns which cost
O(n)
and

recur
sion

Divid
e-

Runs.
To find the general recursion form, we have to calculate cost for

every line as follows:

T (n) =T (m/2) + T (m/2) + n
=2T (m/2) + n
=2T (n/4) + n
Rewrite merge sort recurrence as:

T(n) = {

𝑂(𝑛) 𝑖𝑓 𝑅 = 1

2𝑇 (
𝑛

4
) + 𝑐𝑛 𝑖𝑓 𝑅 > 1

By using the extended master theorem in case 3:

Algorithm 3: Divide-Runs (A[] ,Aux[], RunsDivid[,],left , right)
If left < right
 middle = (left + right) / 2 ___ 1
 Divide-Runs (A , aux, RunsDivid, left , middle) ___ T(m/2)
 Divide-Runs (A , aux, RunsDivid, middle +1 , right) ___ T(m/2)
 Merge (A aux, RunsDivid [left, 0], RunsDivid [middle, 1],
 RunsDivid [right, 1]) ___ O(n)
End

46

when a = 2; b = 4; k = 1; p = 0
we get:
T(n)=O(nlog n)

3.3.2. Best case

In DRS algorithm, if Runs is 1, it considers to be the best case
because there is no need to use divide and merge functions. Two
scenarios appear when number of Runs is 1. First scenario, if target
array is already sorted decreasing .for example:

1 2 3 4 5 6 7 7 8 9

In this case, DRS algorithm looking for Runs which is one in n

47

time which is the same number of target elements . Either the
second scenario, if the Runs is 1 and it sorted Ascending.

9 8 7 7 6 5 4 3 2 1

In this case, Reverse Function is called which cost n/2 to reverse

array.so that, total time complexity for find Runs and reverse array
as following :
O(n) = n + n/2 = 3n/2
Which is O(n) = n.

3.3.3. Average case

In general, the average case running time is considered as bad as
the worst case and analysis as same way as the worst case.

3.4. Sequential DRS Algorithm Implementation

Our code is implemented in c#. It contains the following variables:
I. MinRuns which determines the minimum Run size .Algorithm

can be implemented without determine it ,However it enhance
performance of algorithm. The chosen minimum size is 8
elements.

II. Divide which is a helper array. It is 2D array with 2 columns.
Numbers of row in Divide-Runs determine by divide numbers
of element by MinRuns.

48

III. D
ivi
dC
ou
nt

wh
ich
hel
ps
to

det
er

mine Divide-Runs current row and length of Helper array.
IV. Axillary array which has the same size of main array to help

to rearrange data in merge function.
The implementation also contains three main functions as following:

I. FindRuns function: This function token from Natural merge
sort algorithms. However, it modified to store first index and
last index of Run to Divide-Runs array. This function calls
two other function to help in find and format Runs. If the
Runs length less than MinRun, elements added to meet
minimum length and Insertion sort uses to sort this Run. In
addition, if Run sorted opposite of demand, Reverse function
uses to reverse Run.

Algorithm 4: FindRuns (A ,Aux , RunsDivid[,])

49

int acendOrder = 0;
int descOrder = 0;
int right = 0, mid = 0;
int DividCount = 0;
for (int i = 0; i <= numbers.Length - 1; i++)
 {
 if (i == numbers.Length - 1)
 {

 if (right < numbers.Length && descOrder == 1)
 {

 Array.Reverse(numbers, mid, right - mid + 1);
 Divid[DividCount,0] = mid;
 Divid[DividCount,1] = right;
 DividCount++;
 }
 else if (right < numbers.Length)
 {
 Divid[DividCount, 0] = mid;
 Divid[DividCount, 1] = right;
 DividCount++;
 }
 break;
 }
 else if (acendOrder == 0 && descOrder == 0)
 {

 if (numbers[i] <= numbers[i + 1] && i + 1 >= numbers.Length -
1)
 {

50

 right++;
 Divid[DividCount, 0] = mid;
 Divid[DividCount, 1] = right;
 DividCount++;
 mid = right + 1;
 right++;
 acendOrder = 0;
 descOrder = 0;
 }
 else if (numbers[i] <= numbers[i + 1])
 {
 acendOrder = 1;
 right++;
 }
 else if (numbers[i] >= numbers[i+1] && i+1 >=
numbers.Length-1)
 {
 right++;
 Array.Reverse(numbers, mid, right - mid + 1);
 Divid[DividCount, 0] = mid;
 Divid[DividCount, 1] = right;
 DividCount++;
 mid = right + 1;
 right++;
 acendOrder = 0;
 descOrder = 0;
 }
 else
 {
 descOrder = 1;
 right++;

51

 }
 }
 else if (acendOrder == 1)
 {
 if (numbers[i] <= numbers[i + 1] && i + 1 >= numbers.Length
- 1)
 {
 right++;
 Divid[DividCount, 0] = mid;
 Divid[DividCount, 1] = right;
 DividCount++;
 mid = right + 1;
 right++;
 acendOrder = 0;
 descOrder = 0;
 }

 else if (numbers[i] <= numbers[i + 1])
 right++;
 else
 {
 //**********
 if (right - mid == 1)
 {
 int tmp = numbers[i];
 numbers[i] = numbers[i + 1];
 numbers[i + 1] = tmp;
 if (numbers[i - 1] > numbers[i])
 {
 tmp = numbers[i - 1];
 numbers[i - 1] = numbers[i];

52

 numbers[i] = tmp;
 }
 right++;
 }

 //************
 else
 {
 Divid[DividCount, 0] = mid;
 Divid[DividCount, 1] = right;
 DividCount++;
 mid = right + 1;
 right++;
 acendOrder = 0;
 descOrder = 0;
 }
 }
 }

 else
 {

 if (numbers[i] >= numbers[i + 1] && i + 1 >= numbers.Length
- 1)
 {
 right++;
 Array.Reverse(numbers, mid, right - mid + 1);
 Divid[DividCount, 0] = mid;

53

 Divid[DividCount, 1] = right;
 DividCount++;
 mid = right + 1;
 right++;
 acendOrder = 0;
 descOrder = 0;
 }
 else if (numbers[i] >= numbers[i + 1])
 {
 right++;

 }
 else
 {
 if (right - mid == 1)
 {
 int tmp = numbers[i];
 numbers[i] = numbers[i + 1];
 numbers[i + 1] = tmp;
 if (numbers[i - 1] < numbers[i])
 {
 tmp = numbers[i - 1];
 numbers[i - 1] = numbers[i];
 numbers[i] = tmp;
 }
 right++;
 }
 else
 {
 Array.Reverse(numbers, mid, right - mid + 1);
 Divid[DividCount, 0] = mid;

54

II. D
ivi
de
-

Ru
ns
Al
go
rith
m:
Thi

s
fun

ction as same as classic merge sort algorithm which uses
Divide and conquer technique .However, it divides helper
array rather than main array .In our proposed algorithm we
add one more parameter which represent Helper array and
other parameters are the same. Moreover, all code as same
as merge sort algorithm accept call Merge algorithm which
calls data in helper array. Data in Helper array represent
indexes in Main array .Our technique assumes to save
indexes in array and divides elements according to Runs not
like merge sort algorithm which divides array according to

 Divid[DividCount, 1] = right;
 DividCount++;
 mid = right + 1;
 right++;
 acendOrder = 0;
 descOrder = 0;
 }
 }
 }

 }

 if (DividCount > 1)
 DividRuns(numbers, aux, Divid, 0, DividCount - 1);

55

elements.

III. M

erge algorithm: The merge algorithm plays a critical role in

t

h

e

m

erge sort algorithm as well as Divide-Runs sort algorithm.

This function merges two sorted array into one in linear time

and linear space. There is no change on Merge

technique .The idea in calling Merge by index in Runs.

Algorithm 5: Divide-Runs (A[] ,Aux[], RunsDivid[,],left , right)
If left < right
 middle = (left + right) / 2
 Divide-Runs (A , aux, RunsDivid, left , middle)
 Divide-Runs (A , aux, RunsDivid, middle +1 , right)
 Merge (A aux, RunsDivid [left, 0], RunsDivid [middle, 1],
 RunsDivid [right, 1])
End

Algorithm 6: Merge (A[] ,B[])

56

3.5.P
ar
all
el
DR
S
Al
go
rit
h
m
Im
ple
me
nt
ati
on

P
arallel Divide-Runs sort algorithm will implement using TPL in
C#.TPL is based on the concept of a task, which represents an
asynchronous operation. In some ways, a task resembles a thread

C []=new empty
 While A is not empty and B is not empty
 If head(A) ≤ head(B)
 append head(A) to C
 drop the head of A
 End
 Else
 append head(B) to C
 drop the head of B
 End
 End

 While A is not empty
 append head(A) to C
 drop the head of A
 End

 While B is not empty
 append head(B) to C
 drop the head of B
 End

 Return C[]

57

or ThreadPool work item, but at a higher level of abstraction. The
term task parallelism refers to one or more independent tasks
running concurrently.
 Parallel Divide-Runs algorithm have same variables as sequential

Divide-Runs with adding some other variables which help in parallel
processing. One of these variables is _maxParallelDepth . This
variable is dynamically determined depth of parallel processing. The
Algorithm 7 returns number of maximum parallel depth which uses
in specific PC.

Afte
r

deter
mine

maximum parallel depth, we are going to create as many threads as

Algorithm 7: DetermineMaxParallelDepth()

const int MaxTasksPerProcessor = 1;
 int maxTaskCount = Environment.ProcessorCount *
MaxTaskPerProcessor;
 int icheck = (int)Math.Log(maxTaskCount, 2);

Return (int) Math.Log(maxTaskCount, 2);

58

the number of processors (or cores). So we keep making the
recursive method calls. It is very similar to the standard
implementation except adding parallel depth. We use a parallel
depth for every recursive method call until there is no more
available processor cores. After that, we use the sequential
algorithm. Algorithm 8 Shows how parallel Divide-Runs algorithm
implemented.
Algorithm 8: Parallel_Divide-Runs(int[] array, int[] aux, int[,] Divid, int
iStart, int iEnd, int recursionDepth)
 if (iStart >= iEnd)
 return;
 int middle = (iStart + iEnd) / 2;
 if (recursionDepth <= _maxParallelDepth)
 {
 Parallel.Invoke(
 () => DivideRuns (array, aux, Divid, iStart, middle, recursionDepth +
1),
 () => DivideRuns (array,aux, Divid, middle+1, iEnd,recursionDepth +
1)
);
 }
 else
 {
 DivideRuns (array, aux, Divid, iStart, middle, recursionDepth + 1);
 DivideRuns (array, aux, Divid, middle + 1, iEnd, recursionDepth + 1);
 }
MergeTechnique.Merge(array , aux , Divid [iStart, 0], Divid[middle , 1],
 Divid[iEnd, 1]);

59

3.5.1.Advantages and disadvantages
 Advantages of DRS
 DRS algorithm has better performance than other algorithms

that use natural sorted technique because it does not use
stack .In addition it takes advantage of natural sorted sub
array which not need to operate more sort on array. It takes
only O(n) when array sorted.

 Reversed array is a worst case in most sort algorithms
however in DRS reversed array takes only O(n) to sort.

 It takes O(nlogn) in average and worse case and his
Performance is better compared to other algorithms.

 The divide-and-conquer nature of DRS algorithm makes it
very convenient for parallel processing. By using Divide
technique, it can act to any type of parallel architecture or
distributed system.

 Merge sort usually uses in external sort because of merge
technique which can apply on separated elements. Like
Merge sort, DRS algorithm can apply perfectly on external
sort because it takes divide and merge techniques from
merge sort.

 Divide-Runs is a stable, comparison, recursive, and adaptive
sort algorithm.

3.5.2. Disadvantages of DRS
As in most Merge algorithms , DRS algorithm need more space to

apply Merge technique .It takes O(n) complexity in space whereas,
most algorithms take only O(1) space complexity.

60

4. Experiment and Result Analysis

This chapter describes performance metrics and the evaluation of
experiment results. The goal of the evaluation is to show the
efficiency of the proposed algorithm compared to those available in
the literature. Our focus was on the measuring of the algorithm in
term of Time complexity.
4.1. Experiment Setting

Benchmark algorithms and proposed algorithm was implemented in
C# MS Visual studio 2017 using Console App (.Net Framework 4.6)
and The Task Parallel Library (TPL) for parallel processing. The
machine used for performance evaluation is Lenovo laptop with
256MB of SSD disk storage. It has an Intel(R) Core i7-3632QM
CPU which works at 2.20GHz. The CPU has four cores that can
deliver 8 threads via Intel hyper-Threading Technology.The Chip on
mainboard has one DDR3 memory controllers which provides
800MHz memory clock frequency. The capacity of main memory is
8GB.

61

4.2. Performance Metrics

The main measured metric to evaluate the proposed algorithm is
Execution time (ET).This metric was used in literature to evaluate
the efficiency of algorithms, such as [15] [26] [6] [8].
Integer numbers have been generated randomly and used for the

experiments. Statistical analysis for 100 samples generated
randomly was conducted for each dimension of input, starting from
the input set of 1 million elements and increasing the size of the
task 100,000 elements for each test to 2 million elements. The
number of samples was chosen as 100 since it is a standard
statistical number to examine proposed methods in benchmark tests
[58]. Average of execution for 100 samples calculate by equation:
Average of ET = 𝑆𝑢𝑚 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

The experiment is conducted in sequential with three scenarios,
which are
(1) When elements are Sorted (one Run),
(2) When elements are random and
(3) Elements with 10,100 and 1000 Runs.
These Scenarios will compare with different dataset size. For
evaluating parallel Divide-Runs algorithm, it will be compared with
Merge sort in different scenarios and different dataset size too.

62

4.3.Result Evaluation

4.3.1 Sequential experiment

Proposed algorithm is compared sequentially with Timsort and α-
stack algorithms in different situation as shown in table 3:

K TimSort α-Stack DRSA
1 7.24 7.32 7.34
10 122.46 122.53 108.91
100 232.62 232.01 198.16
1000 347.52 346.58 289.74

Random 839.95 837.16 644.00

Table 3: COMPARING BETWEEN TIMSORT, Α-STACK, AND DRS ALGORITHMS

i. When all elements are random Figure 14 shows the
enhancement and the preference of proposed algorithm. The
results shows decreasing in the execution time with 29.99%
comparing with α-stack and 30.43% comparing with Timsort.

63

[m
s]

Sample Size

Figure 14: Sorting time comparisons (Random Elements)

ii. When elements are sorted .Figure 15 shows convergence
between proposed algorithm and benchmark algorithms
because all of them use the same technique to find Runs and
all of them have one Run when elements are sorted.

0

200

400

600

800

1000

1200

1400

α-Stack

DivideRuns

TimSort

64

Sample Size

[m
s]

Figure 15: Sorting time comparisons (Sorted Elements)

iii. When dataset used sequences of 10,100,1000 Runs, Table
3 shows the enhancement of DRS algorithm according to
numbers of Runs comparing with Benchmark algorithms.

Also, Figure 16,17, and 18 show the preference of proposed
algorithm

0

2

4

6

8

10

12

α-Stack

DivideRuns

TimSort

65

Sample Size

Sample Size

[m
s]

[m

s]

Figure 16: Sorting time comparisons (10 Runs)

Figure 17: Sorting time comparisons (100 Runs)

0

20

40

60

80

100

120

140

160

180

α-Stack

DivideRuns

TimSort

0

50

100

150

200

250

300

350

α-Stack

DivideRuns

TimSort

66

Sample Size

[m
s]

Figure 18: Sorting time comparisons (1000 Runs)

4.3.2 Parallel Experiment

Proposed algorithm is compared parallel with Merge Sort when inputs
are sorted and random as shown in table 4.

P-DRS P-MergeSort

Sorted 20.70 140.14
Random 173.38 241.18

Table 4: Compare between Merge sort and DRS

0

50

100

150

200

250

300

350

400

450

500

α-Stack

DivideRuns

TimSort

67

Sample Size

[m
s]

1. When all elements are random Figure 19 shows the

enhancement and the preference of proposed algorithm. The
results shows decreasing in the execution time with 39.1 %
comparing with merge sort. In addition, we notice that when
Runs is less , the decreasing of execution time became better.

Figure 19: Parallel Sorting time comparisons (Random Elements)

2. When elements are sorted .Figure 20 shows the proposed
algorithm is much better than merge sort because proposed
algorithm is adaptive algorithm and it takes only O(n) time whereas
merge sort takes O(nlogn).

0

50

100

150

200

250

300

350

ParallelDivide-Runs

ParallelMergeSort

68

Sample Size

[m
s]

Figure 20: Parallel sorting time comparisons (Sorted Elements)

4.3.3 Additional Experiments

For another way of evaluation, testing were used 100 samples
generated at random for the task size from 100 to 10,000 000
elements, increasing the size of sorted array ten times in the
following experiments.

0

50

100

150

200

250

ParallelDivide-Runs

ParallelMergeSort

69

Average of ET
 # of elements α-Stack DivideRuns TimSort Grand Total

10 0 0 0 0
100 0 0 0 0
1000 0 0 0 0
10000 2.05 2.02 2.05 2.04
100000 33.78 25.15 33.33 30.75333333
1000000 396.32 297.71 393.66 362.5633333
10000000 4443.04 3422.53 4456.76 4107.443333
Grand Total 696.455714 535.344285 697.971428 643.257142

Table 5: Sequential Sorting time comparisons (Random 10M Elements)

Average of ET
 # of elements α-Stack DivideRuns TimSort Grand Total

10 0 0 0 0
100 0 0 0 0
1000 0 0 0 0
10000 0 0 0 0
100000 0 1 0 0.333333333
1000000 3.03 10.42 3.04 5.496666667
10000000 36.75 108.41 36.8 60.65333333
Grand Total 5.682857143 17.1185714 5.69142857 9.49761904

Table 6: Sequential Sorting time comparisons (Sorted 10M Elements)

Average of ET
 # of elements α-Stack DivideRuns TimSort Grand Total

10 0.01 0.01 0.01 0.01
100 0.04 0 0.04 0.026666667
1000 0 0 0 0
10000 0 0 0.01 0.003333333
100000 5.95 5.1 5.26 5.436666667
1000000 61.79 57.89 59.29 59.65666667
10000000 632.38 598.07 592.95 607.8
Grand Total 100.0242857 94.43857143 93.93714286 96.13333333

Table 7: Sequential Sorting time comparisons (10Runs with 10M Elements)

70

Average of ET
 # of elements α-Stack DivideRuns TimSort Grand Total

10 0 0 0 0
100 0 0 0 0
1000 0 0 0 0
10000 1.01 0.84 1.02 0.956666667
100000 11.01 9.26 11.05 10.44
1000000 113.44 99.49 111.05 107.9933333
10000000 1121.06 1014.89 1134.95 1090.3
Grand Total 178.0742857 160.64 179.7242857 172.8128571

Table 8: Sequential Sorting time comparisons (100Runs with 10M Elements)

Average of ET
 # of elements α-Stack DivideRuns TimSort Grand Total

10 0 0 0 0
100 0 0 0 0
1000 0 0.02 0.02 0.013333333
10000 2.02 1.01 2.01 1.68
100000 20.47 13.97 19.72 18.05333333
1000000 170.79 141.18 167.51 159.8266667
10000000 1646.94 1431.5 1660.71 1579.716667
Grand Total 262.8885714 226.8114286 264.2814286 251.3271429

Table 9: Sequential Sorting time comparisons (1000Runs with 10M Elements)

Average of ET
 # of elements ParallelDivide-Runs ParallelMergeSort Grand Total

10 0.07 0.05 0.06
100 0.02 0.01 0.015
1000 0.02 0.03 0.025
10000 1.05 1.2 1.125
100000 9.66 13.32 11.49
1000000 118.82 163.79 141.305
10000000 1190.58 1656.82 1423.7
Grand Total 188.6028571 262.1742857 225.3885714

Table 10: Parallel Sorting time comparisons (Random 10M Elements)

71

[m
s]

Average of ET
 # of elements ParallelDivide-Runs ParallelMergeSort Grand Total

10 0.67 0.14 0.405
100 0.06 0 0.03
1000 0.01 0.03 0.02
10000 0 0.53 0.265
100000 2.15 9.61 5.88
1000000 15.18 91.36 53.27
10000000 137.51 1010.58 574.045
Grand Total 22.22571429 158.8928571 90.55928571

Table 11: Parallel Sorting time comparisons (Sorted 10M Elements)

The following graphs show statistical analysis for 100 samples
generated randomly was conducted for each dimension of input,
starting from the input set of 1million elements and increasing the
size of the task 1,000,000 elements for each test to 10 million
elements.

Figure 21: Sequential Sorting time comparisons (Random 1M to 10M Elements)

0

1000

2000

3000

4000

5000

6000

7000

α-Stack

DivideRuns

TimSort

Sample Size

72

[m
s]

[m

s]

[m
s]

[m

s]

Figure 22: Sequential Sorting time comparisons (Sorted 1M to 10M Elements)

Figure 23: Sequential Sorting time comparisons (10Runs 1M to 10M Elements)

Figure 24: Sequential Sorting time comparisons (100Runs 1M to 10M Elements)

Figure 25: Sequential Sorting time comparisons (1000Runs 1M to 10M Elements)

0

10

20

30

40

50

60

α-Stack

DivideRuns

TimSort

0
100
200
300
400
500
600
700
800
900

α-Stack

DivideRuns

TimSort

0
200
400
600
800

1000
1200
1400
1600
1800

α-Stack

DivideRuns

TimSort

0

500

1000

1500

2000

2500

α-Stack

DivideRuns

TimSort

Sample Size

Sample Size

Sample Size

Sample Size

73

[m
s]

[m

s]

[m
s]

Figure 26: Parallel Sorting time comparisons (Random 1M to 10M Elements)

Figure 27: Parallel Sorting time comparisons (Sorted 1M to 10M Elements)

The following graphs show statistical analysis for 50 samples
generated randomly was conducted for each dimension of input,
starting from the input set of 1million elements and increasing the
size of the task 100,000 elements for each test to 2 million
elements.

Figure 28: Sequential Sorting time comparisons (Random Elements 50 Samples)

0

500

1000

1500

2000

ParallelDivide-Runs

ParallelMergeSort

0

200

400

600

800

1000

1200

ParallelDivide-Runs

ParallelMergeSort

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

α-Stack

RunMerge

TimSort

Sample Size

Sample Size

Sample Size

74

[m
s]

[m

s]

[m
s]

[m

s]

Figure 29: Sequential Sorting time comparisons (Sorted Elements 50 Samples)

Figure 30: Sequential Sorting time comparisons (10Runs Elements 50 Samples)

Figure 31: Sequential Sorting time comparisons (100Runs Elements 50 Samples)

Figure 32: Sequential Sorting time comparisons (1000Runs Elements 50 Samples)

0
1
2
3
4
5
6
7
8

α-Stack

RunMerge

TimSort

0

20

40

60

80

100

120

140

α-Stack

RunMerge

TimSort

0

50

100

150

200

250

α-Stack

RunMerge

TimSort

0
50

100
150
200
250
300
350
400

α-Stack

RunMerge

TimSort

Sample Size

Sample Size

Sample Size

Sample Size

75

[m
s]

[m

s]

Figure 33: Parallel Sorting time comparisons (Random Elements 50 Samples)

Figure 34: Parallel Sorting time comparisons (Sorted Elements 50 Samples)

0

500

1000

1500

2000

ParallelDivide-Runs

ParallelMergeSort

0

200

400

600

800

1000

1200

1400

ParallelDivide-Runs

ParallelMergeSort

Sample Size

Sample Size

76

5. Conclusion and Future work

5.1. Conclusion

In this study, a new natural merge sort algorithm called Divide-
Runs Sort algorithm (DRS) proposed. DRS algorithm is a
comparison, stable, and adaptive algorithm which works recursively.
DRS takes benefits from natural sub-ordered list call Runs as well
as Divide and Conquer technique. DRS solves the best-case
problem in merge sort ,and it solves parallel processing in natural
merge sort algorithms.
The results evaluation indicates that DRS is an efficient algorithm

and decreasing time complexity in execution time to 30% comparing
with benchmarks in sequential processing and decreasing execution
time to 39% in parallel processing. Thus, the proposed algorithm is
more efficient than the previous merge sort algorithms because it
takes advantage of two parts of Merge (original merge sorting and
Natural Merge sorting)

77

5.2. Future work

For future work, we are planning to implement DRS parallel sort
algorithm in GPU and Distributed system. The implementation will
compare with [26] and it will take the same model .Nowadays,
Merge sort is usually used in external sort .we are planning to
implement DRS on external sort model that shows in [27].We
expect DRS algorithm will be more efficient in parallel, distributed
and external sorting

78

References

[1] F. Zheng, M. Yin, X. Xu and M. Xu, "Optimized Merge Sort on Modern Commodity Multi-core CPUs,"

TELKOMNIKA Telecommunication, Computing, Electronics and Control, Vols. Vol 14, No 1: March

2016, 2016.

[2] H. D. M. V. de Wiel, "Sort Performance Improvements in Oracle Database 10g Release2," 2005, An

Oracle White Paper.

[3] A. Djajadi, F. Laoda, R. Rusyadi, T. Prajogo and r. Sinaga, "A Model Vision of Sorting System

Application Using Robotic Manipulator," TELKOMNIKA Telecommunication, Computing, Electronics

and Control, Vols. Vol 8, No 2: 2010, 2010.

[4] S. Buss and A. Knop, "Strategies for stable merge sorting," in Proceedings of the Thirtieth Annual

ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2019, pp. 1272--1290.

[5] G. a. A. N. Kocher, "Analysis and Review of Sorting Algorithms," International Journal of Scientific

Engineering and Research (IJSER), vol. 2, no. 3, pp. 81--84, 2014.

[6] A. Uyar, "Parallel merge sort with double merging," in 2014 IEEE 8th International Conference on

Application of Information and Communication Technologies (AICT), IEEE, 2014, pp. 1--5.

[7] D. a. A. A. Pasetto, "A comparative study of parallel sort algorithms," in Proceedings of the ACM

international conference companion on Object oriented programming systems languages and

applications companion, ACM, 2011, pp. 203--204.

[8] Auger, Nicolas, Nicaud, C. a. Pivoteau and Carine, "Merge Strategies: from Merge Sort to TimSort,"

HAL, 2015.

[9] T. Peters, "Timsort," 2002. [Online]. Available:

http://svn.python.org/projects/python/trunk/Objects/listsort.txt.

[10] R. Rashidy, S. Yousefpour and M. Koohi, "Parallel bubble sort using stream program," International

Conference on Application of Information and Communication Technologies (AICT), pp. 1-5, 2011.

[11] X. X. M. Y. F. Z. Ming Xu, "Optimized Merge Sort on Modern Commodity Multi-core CPUs,"

TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 14, 2016.

[12] D. E. Knuth, The art of computer programming: sorting and searching, Pearson Education, 1998.

[13] Z. Yildiz, M. Aydin and G. Yilmaz, "Parallelization of bitonic sort and radix sort algorithms on many

core GPUs," 2013.

[14] S. Y. Wang, "A new sort algorithm: self-indexed sort," ACM SIGPLAN Notices, vol. 31, pp. 28--36,

1996.

[15] A. K. Karunanithi, "A Survey , Discussion and Comparison of Sorting Algorithms," Department of

Computing Science, Umea University, 2014.

[16] Z. A. Abbas, "Comparison Study of Sorting Techniques in Dynamic Data Structure," Universiti Tun

Hussein Onn Malaysia, 2016.

79

[17] V. Joshi, "https://medium.com," 8 5 2017. [Online]. Available: https://medium.com/basecs/sorting-

out-the-basics-behind-sorting-algorithms-b0a032873add.

[18] "Wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/Adaptive_sort.

[19] "EECS Instructional and Electronics Support," University of California,Berkeley, [Online]. Available:

https://inst.eecs.berkeley.edu/~cs61bl/r//cur/sorting/algorithm-

comparisons.html?topic=lab26.topic&step=5&course=.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, Third Edition ed.,

3th, Ed., The MIT Press, 2009.

[21] R. L. Kruse and A. J. Ryba, Data Structures and Program Design in C++, Prentice-Hall, Inc., 1999.

[22] M. A. Weiss, Data Structures and Algorithm Analysis in C++, 2nd ed., Addison-Wesley Longman

Publishing Co., Inc., 1998.

[23] K. a. B. A. Thabit, "A Novel Approach of Selection Sort Algorithm with Parallel Computing and

Dynamic Programing Concepts," Computing and Information Technology Sciences, p. 27.

[24] C. Bron, "Merge Sort Algorithm," Commun. ACM, vol. 15, no. May 1972, pp. 357--358, 1972.

[25] T. H. a. L. C. E. a. R. R. L. a. S. C. Cormen, Introduction to algorithms, 3th, Ed., MIT press, 2009.

[26] H. Shamoto, K. Shirahata, A. Drozd, H. Sato and S. Matsuoka, "GPU-Accelerated Large-Scale

Distributed Sorting Coping with Device Memory Capacity," IEEE Transactions on Big Data, vol. 2, pp.

57-69, 2016.

[27] J. Lee, H. Roh and S. Park, "External Mergesort for Flash-Based Solid State Drives," IEEE Transactions

on Computers, vol. 65, pp. 1518-1527, 2016.

[28] M. Kronrod, "Optimal ordering algorithm without operational field," DOKLADY AKADEMII NAUK

SSSR, vol. 186, p. 1256, 1969.

[29] L. T. Pardo, "Stable sorting and merging with optimal space and time bounds," SIAM Journal on

Computing, vol. 6, pp. 351--372, 1977.

[30] J. Salowe and W. Steiger, "Simplified stable merging tasks," Journal of Algorithms, vol. 8, pp. 557--

571, 1987.

[31] T. Pasanen, "Lajittelu minimitilassa," M. Sc. Thesis T-93-3, Department of Computer Science,

University of Turku, Turku, 1993.

[32] B.-C. Huang and M. A. Langston, "Practical in-place merging," Communications of the ACM, vol. 31,

pp. 348--353, 1988.

[33] B.-C. Huang and M. A. Langston, "Fast stable merging and sorting in constant extra space," The

Computer Journal, vol. 35, pp. 643--650, 1992.

[34] O. Shivers, "A simple and efficient natural merge sort," Georgia Institute of Technology, 2002.

[35] V. Jugé, "Adaptive Shivers Sort: An Alternative Sorting Algorithm," arXiv preprint arXiv:1809.08411,

2018.

80

[36] T. Takaoka, "Partial Solution and Entropy," in Mathematical Foundations of Computer Science 2009,

Berlin, Heidelberg, Springer Berlin Heidelberg, 2009, pp. 700--711.

[37] J. I. Munro and S. Wild, "Nearly-optimal mergesorts: Fast, practical sorting methods that optimally

adapt to existing runs," arXiv preprint arXiv:1805.04154, 2018.

[38] M. a. C. D. La Rocca, "NeatSort-A practical adaptive algorithm," arXiv preprint arXiv:1407.6183,

2014.

[39] B. Chandramouli and J. Goldstein, "Patience is a virtue: Revisiting merge and sort on modern

processors," in Proceedings of the 2014 ACM SIGMOD international conference on Management of

data, ACM, 2014, pp. 731--742.

[40] S. S. Skiena, "Encroaching lists as a measure of presortedness," BIT Numerical Mathematics, vol. 28,

pp. 775--784, 1988.

[41] C. Levcopoulos and O. Petersson, "Splitsort—an adaptive sorting algorithm," Information Processing

Letters, vol. 39, pp. 205--211, 1991.

[42] P. McIlroy, Optimistic Sorting and Information Theoretic Complexity, Philadelphia, PA, USA: Society

for Industrial and Applied Mathematics, 1993.

[43] "Wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/Timsort.

[44] C. A. Hoare, "Quicksort," The Computer Journal, vol. 5, no. 1, pp. 10--16, 1962.

[45] H. E. Seward, Information sorting in the application of electronic digital computers to business

operations. Master's thesis, Stanford University, 1954.

[46] N. a. G. J. a. K. R. a. M. D. Govindaraju, "GPUTeraSort: high performance graphics co-processor

sorting for large database management," in Proceedings of the 2006 ACM SIGMOD international

conference on Management of data, ACM, 2006, pp. 325--336.

[47] P. J. a. S. S. D. a. I. B. R. a. R. G. R. Varman, "Merging multiple lists on hierarchical-memory

multiprocessors," Journal of Parallel and Distributed Computing, vol. 12, pp. 171--177, 1991.

[48] J. a. S. P. a. P. F. Singler, "MCSTL: The multi-core standard template library," in European Conference

on Parallel Processing, Springer, 2007, pp. 682--694.

[49] K. E. Batcher, "Sorting networks and their applications," in Proceedings of the April 30--May 2, 1968,

spring joint computer conference, ACM, 1968, pp. 307--314.

[50] G. a. N. A. Bilardi, "Adaptive bitonic sorting: An optimal parallel algorithm for shared-memory

machines," SIAM Journal on Computing, vol. 18, pp. 216--228, 1989.

[51] L. Liu, "Acceleration of k-Nearest Neighbor and SRAD Algorithms Using Intel FPGA SDK for OpenCL,"

2018.

[52] W. D. a. M. A. Frazer, "Samplesort: A sampling approach to minimal storage tree sorting," Journal of

the ACM (JACM), vol. 17, pp. 496--507, 1970.

[53] J. a. C. Y. Huang, "Parallel sorting and data partitioning by sampling," 1983.

81

[54] E. a. K. L. V. Solomonik, "Highly scalable parallel sorting," 2010.

[55] M. a. B. G. E. Zagha, "Radix sort for vector multiprocessors," in Conference on High Performance

Networking and Computing: Proceedings of the 1991 ACM/IEEE conference on Supercomputing,

1991, pp. 712--721.

[56] A. a. K. Y. Sohn, "Load balanced parallel radix sort," in Proceedings of the 12th international

conference on Supercomputing, ACM, 1998, pp. 305--312.

[57] V. Choudhary, "developerinsider," [Online]. Available: https://developerinsider.co/introduction-to-

divide-and-conquer-algorithm-design-paradigm/.

[58] Z. a. W. M. a. P. D. Marsza{\l}ek, "Fully Flexible Parallel Merge Sort for Multicore Architectures,"

Complexity, vol. 2018, 2018.

[59] A. Aslam, M. S. Ansari and S. Varshney, "Non-Partitioning Merge-Sort: Performance Enhancement

by Elimination of Division in Divide-and-Conquer Algorithm," 2016.

[60] M. Wozniak, Z. Marszaek, M. Gabryel and R. K. Nowicki, "Modified merge sort algorithm for large

scale data sets," 2013.

[61] T. Sutikno and I. M. I. S. D. Subroto, "The architecture of indonesian publication index:A major

indonesian academic database," TELKOMNIKA Telecommunication, Computing,Electronics and

Control, vol. 12, 2014.

82

Appendices

83

Appendix A

Additional Tables and Graphs

The following tables show experiment result between DRS
algorithm and benchmarks which represent in graphs in chapter 4.

Average of ET
 # of elements α-Stack DivideRuns TimSort Grand Total

1000000 549.51 417.48 549.51 505.5
1100000 592.35 462.03 593.47 549.2833333
1200000 649.89 505.23 651.33 602.15
1300000 713.17 552.31 714.22 659.9
1400000 772.16 598.21 774.61 714.9933333
1500000 830.74 641.43 837.97 770.0466667
1600000 893.41 688.14 899.64 827.0633333
1700000 955.05 732.85 957.93 881.9433333
1800000 1015.16 779.59 1021.01 938.5866667
1900000 1094.32 834.81 1096.32 1008.483333
2000000 1142.96 871.93 1143.49 1052.793333
Grand Total 837.16 644.00 839.95 773.7039394

Table 12 : Sequential Sorting time comparisons (Random Elements)

84

Average of ET
 # of elements α-Stack DivideRuns TimSort Grand Total

1000000 4.65 4.88 4.71 4.746666667
1100000 5.24 5.19 5.21 5.213333333
1200000 5.82 5.7 5.61 5.71
1300000 6.38 6.23 6.36 6.323333333
1400000 6.66 6.66 6.5 6.606666667
1500000 7.33 7.32 7.46 7.37
1600000 7.75 7.79 7.55 7.696666667
1700000 8.51 8.65 8.47 8.543333333
1800000 9.03 8.95 8.72 8.9
1900000 9.37 9.55 9.42 9.446666667
2000000 9.77 9.77 9.6 9.713333333
Grand Total 7.32 7.34 7.24 7.30

Table 13 : Sequential Sorting time comparisons (Sorted Elements)

Average of ET

of elements α-Stack DivideRuns TimSort
Grand
Total

1000000 81.1 71.79 81.45 78.11
1100000 89.15 78.84 88.72 85.57
1200000 96.71 87.1 96.67 93.49
1300000 104.92 93.8 104.46 101.06
1400000 114.21 102.03 114.94 110.39
1500000 120.92 108.3 121.9 117.04
1600000 130.83 116.03 131.03 125.96
1700000 138.37 123.41 140.17 133.98
1800000 146.08 131.04 147.5 141.54
1900000 154.98 139.67 158.19 150.95
2000000 170.58 146 162.04 159.54
Grand Total 122.53 108.91 122.46 117.97

Table 14: Sequential Sorting time comparisons (10 Runs)

85

Average of ET

 # of elements α-Stack DivideRuns TimSort Grand Total
1000000 155.38 131.81 155.38 147.5233333
1100000 169.1 145.2 170.05 161.45
1200000 186.16 158.45 183.81 176.14
1300000 201.69 171.83 200.07 191.1966667
1400000 218.31 184.01 215.12 205.8133333
1500000 232.57 197.99 237.36 222.64
1600000 247.5 211.66 249.83 236.33
1700000 262.49 224.51 264.61 250.5366667
1800000 277.45 238.28 279.21 264.98
1900000 292.62 251.37 293.71 279.2333333
2000000 308.88 264.67 309.69 294.4133333
Grand Total 232.01 198.16 232.62 220.9324242

Table 15: Sequential Sorting time comparisons (100 Runs)

Average of ET
 # of elements α-Stack DivideRuns TimSort Grand Total

1000000 234.64 192.98 234.92 220.8466667
1100000 254.14 213.09 254.43 240.5533333
1200000 276.84 231.09 278.07 262
1300000 300.01 250.18 300.39 283.5266667
1400000 322.69 269.99 324.69 305.79
1500000 345.01 288.68 349.31 327.6666667
1600000 367.71 307.97 368.15 347.9433333
1700000 390.04 327.01 391.71 369.5866667
1800000 420.82 351.64 423.35 398.6033333
1900000 438.92 367.48 437.15 414.5166667
2000000 461.59 387.06 460.52 436.39
Grand Total 346.58 289.74 347.52 327.9475758

Table 16: Sequential Sorting time comparisons (1000 Runs)

86

Average of ET

of elements
ParallelDivide-
Runs ParallelMergeSort Grand Total

1000000 118.63 161.35 139.99
1100000 121.96 165.24 143.6
1200000 139.74 190.9 165.32
1300000 153.84 211.16 182.5
1400000 160.27 220.62 190.445
1500000 176.14 242.34 209.24
1600000 178.27 249.71 213.99
1700000 188.31 263.9 226.105
1800000 213.09 301.17 257.13
1900000 224.66 318.62 271.64
2000000 232.32 327.93 280.125
Grand Total 173.3845455 241.1763636 207.2804545

Table 17: Parallel Sorting time comparisons (Random Elements)

Average of ET

of elements
ParallelDivide-
Runs ParallelMergeSort Grand Total

1000000 15.35 89.52 52.435
1100000 16.81 99.02 57.915
1200000 17.87 109.7 63.785
1300000 19.07 119.98 69.525
1400000 19.78 129 74.39
1500000 21.46 138.73 80.095
1600000 19.98 150.18 85.08
1700000 21.41 155.13 88.27
1800000 22.23 168.52 95.375
1900000 24.82 176.65 100.735
2000000 28.96 205.08 117.02
Grand Total 20.70363636 140.1372727 80.42045455

Table 18: Parallel Sorting time comparisons (Sorted Elements)

87

[m
s]

[m

s]

[m
s]

The following graphs show experiment with change of α in α-stack
algorithm (α=2)

Figure 35: Sequential Sorting time comparisons (Random Elements with α=2)

Figure 36: Sequential Sorting time comparisons (Sorted Elements with α=2)

Figure 37: Sequential Sorting time comparisons (10Runs Elements with α=2)

0
100
200
300
400
500
600
700
800
900

α-Stack

DivideRuns

TimSort

0
1
2
3
4
5
6
7
8
9

α-Stack

DivideRuns

TimSort

0

20

40

60

80

100

120

140

α-Stack

DivideRuns

TimSort

Sample Size

Sample Size

Sample Size

88

[m
s]

[m

s]

[m
s]

Figure 38: Sequential Sorting time comparisons (100Runs Elements with α=2)

Figure 39: Sequential Sorting time comparisons (1000Runs Elements with α=2)

Figure 40: Parallel Sorting time comparisons (Random Elements with α=2)

0

50

100

150

200

250

α-Stack

DivideRuns

TimSort

0
50

100
150
200
250
300
350
400

α-Stack

DivideRuns

TimSort

0

50

100

150

200

250

300

350

ParallelDivide-Runs

ParallelMergeSort

Sample Size

Sample Size

Sample Size

89

Appendix B

Sequential Divide-Runs Algorithm Code

DRS.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace RunsMerge
{
 class DRS
 {
 static public void FindRuns(int[] numbers, int[] aux, int[,] Divid)
 {
 int acendOrder = 0;
 int descOrder = 0;
 int right = 0, mid = 0;
 int DividCount = 0;

 for (int i = 0; i <= numbers.Length - 1; i++)
 {

90

 if (i == numbers.Length - 1)
 {
 if (right < numbers.Length && descOrder == 1)
 {
 Array.Reverse(numbers, mid, right - mid + 1);
 Divid[DividCount,0] = mid;
 Divid[DividCount,1] = right;
 DividCount++;
 }
 else
 if (right < numbers.Length)
 {
 Divid[DividCount, 0] = mid;
 Divid[DividCount, 1] = right;
 DividCount++;
 }
 break;
 }
 else if (acendOrder == 0 && descOrder == 0)
 {
 if (numbers[i] <= numbers[i + 1] && i + 1 >= numbers.Length - 1)
 {
 right++;
 Divid[DividCount, 0] = mid;
 Divid[DividCount, 1] = right;
 DividCount++;
 mid = right + 1;
 right++;
 acendOrder = 0;
 descOrder = 0;
 }

91

 else if (numbers[i] <= numbers[i + 1])
 {
 acendOrder = 1;
 right++;
 }
 else if (numbers[i] >= numbers[i + 1] && i + 1 >= numbers.Length
- 1)
 {
 right++;
 Array.Reverse(numbers, mid, right - mid + 1);
 Divid[DividCount, 0] = mid;
 Divid[DividCount, 1] = right;
 DividCount++;
 mid = right + 1;
 right++;
 acendOrder = 0;
 descOrder = 0;
 }
 else
 {
 descOrder = 1;
 right++;
 }
 }
 else if (acendOrder == 1)
 {
 if (numbers[i] <= numbers[i + 1] && i + 1 >= numbers.Length - 1)
 {
 right++;
 Divid[DividCount, 0] = mid;
 Divid[DividCount, 1] = right;

92

 DividCount++;
 mid = right + 1;
 right++;
 acendOrder = 0;
 descOrder = 0;
 }
 else if (numbers[i] <= numbers[i + 1])
 right++;
 else
 {
 //**********
 if (right - mid == 1)
 {
 int tmp = numbers[i];
 numbers[i] = numbers[i + 1];
 numbers[i + 1] = tmp;

 if (numbers[i - 1] > numbers[i])
 {
 tmp = numbers[i - 1];
 numbers[i - 1] = numbers[i];
 numbers[i] = tmp;
 }
 right++;

 }

 //************
 else
 {

93

 Divid[DividCount, 0] = mid;
 Divid[DividCount, 1] = right;
 DividCount++;
 mid = right + 1;
 right++;
 acendOrder = 0;
 descOrder = 0;
 }
 }
 }
 else
 {
 if (numbers[i] >= numbers[i + 1] && i + 1 >= numbers.Length - 1)
 {
 right++;
 Array.Reverse(numbers, mid, right - mid + 1);
 Divid[DividCount, 0] = mid;
 Divid[DividCount, 1] = right;
 DividCount++;
 mid = right + 1;
 right++;
 acendOrder = 0;
 descOrder = 0;
 }
 else if (numbers[i] >= numbers[i + 1])
 {
 right++;
 }
 else
 {
 if (right - mid == 1)

94

 {
 int tmp = numbers[i];
 numbers[i] = numbers[i + 1];
 numbers[i + 1] = tmp;
 if (numbers[i - 1] < numbers[i])
 {
 tmp = numbers[i - 1];
 numbers[i - 1] = numbers[i];
 numbers[i] = tmp;
 }
 right++;
 }
 else
 {
 Array.Reverse(numbers, mid, right - mid + 1);
 Divid[DividCount, 0] = mid;
 Divid[DividCount, 1] = right;
 DividCount++;
 mid = right + 1;
 right++;
 acendOrder = 0;
 descOrder = 0;
 }
 }
 }
 }
 if (DividCount > 1)
 DividRuns(numbers, aux, Divid, 0, DividCount - 1);
 }
 public static void DividRuns(int[] array, int[] aux, int[,] Divid, int left, int right)
 {

95

 if (left < right)
 {
 int middleIndex = (left + right) / 2;
 DividRuns(array, aux, Divid, left, middleIndex);
 DividRuns(array, aux, Divid, middleIndex + 1, right);
 Merge(array, aux, Divid[left, 0], Divid[middleIndex, 1], Divid[right, 1]);
 }
 }
 private static void Merge(int[] array, int[] aux, int leftIndex, int middleIndex,
int right)
 {
 int rightIndex = middleIndex + 1;
 int auxIndex = leftIndex;
 int start = leftIndex;
 int num_elements = (right - leftIndex + 1);
 while (leftIndex <= middleIndex && rightIndex <= right)
 {
 if (array[leftIndex] <= array[rightIndex])
 {
 leftIndex++;
 start++;
 num_elements--;
 auxIndex++;
 }
 else
 break;
 }
 while (leftIndex <= middleIndex && rightIndex <= right)
 {
 if (array[leftIndex] <= array[rightIndex])
 {

96

 aux[auxIndex] = array[leftIndex++];
 }
 else
 {
 aux[auxIndex] = array[rightIndex++];
 }
 auxIndex++;
 }
 while (leftIndex <= middleIndex)
 {
 aux[auxIndex] = array[leftIndex++];
 auxIndex++;
 }
 while (rightIndex <= right)
 {
 aux[auxIndex] = array[rightIndex++];
 auxIndex++;
 }
 Array.Copy(aux, start, array, start, num_elements);
 }
 }
}

97

Appendix C

Parallel Divide-Runs Algorithm Code

ParallelRunsMerge.cs

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ParallelRunsMerge
{
 class ParallelRunMerge2
 {
 private static int _maxParallelDepth;
 protected static int DetermineMaxParallelDepth()
 {
 // const int MaxTasksPerProcessor = 8;
 const int MaxTasksPerProcessor = 1;
 int maxTaskCount = Environment.ProcessorCount *
MaxTasksPerProcessor;
 int icheck = (int)Math.Log(maxTaskCount, 2);
 return (int)Math.Log(maxTaskCount, 2);
 }

98

 public static void MainTask(int[] numbers)
 {
 //Find Runs First RunMerge
 int[] aux = new int[numbers.Length];
 int[,] Divid = new int[numbers.Length / 8 + 10, 2];
 int dividCountNo = numbers.Length / 8;
 dividCountNo = dividCountNo / 6 + 2;
 int ParallelNumber = (numbers.Length - 1) / 6;
 int[,] Divid1 = new int[dividCountNo, 2];
 int[,] Divid2 = new int[dividCountNo, 2];
 int[,] Divid3 = new int[dividCountNo, 2];
 int[,] Divid4 = new int[dividCountNo, 2];
 int[,] Divid5 = new int[dividCountNo, 2];
 int[,] Divid6 = new int[dividCountNo, 2];

 Task<int> task1F = Task<int>.Factory.StartNew(() => { return
FindRuns(numbers, Divid1, 0, ParallelNumber + 1); });
 Task<int> task2F = Task<int>.Factory.StartNew(() => { return
FindRuns(numbers, Divid2, (1 * ParallelNumber) + 1, (2 * ParallelNumber) + 1);
});
 Task<int> task3F = Task<int>.Factory.StartNew(() => { return
FindRuns(numbers, Divid3, (2 * ParallelNumber) + 1, (3 * ParallelNumber) + 1);
});
 Task<int> task4F = Task<int>.Factory.StartNew(() => { return
FindRuns(numbers, Divid4, (3 * ParallelNumber) + 1, (4 * ParallelNumber) + 1);
});
 Task<int> task5F = Task<int>.Factory.StartNew(() => { return
FindRuns(numbers, Divid5, (4 * ParallelNumber) + 1, (5 * ParallelNumber) + 1);
});

99

 Task<int> task6F = Task<int>.Factory.StartNew(() => { return
FindRuns(numbers, Divid6, (5 * ParallelNumber) + 1, numbers.Length); });
 int DividCount1 = task1F.Result;
 int DividCount2 = task2F.Result;
 int DividCount3 = task3F.Result;
 int DividCount4 = task4F.Result;
 int DividCount5 = task5F.Result;
 int DividCount6 = task6F.Result;
 for (int i = 0; i < DividCount1; i++)
 {
 Divid[i, 0] = Divid1[i, 0];
 Divid[i, 1] = Divid1[i, 1];
 }
 int iCount = DividCount1;
 for (int i = 0; i < DividCount2; i++)
 {
 Divid[i + iCount, 0] = Divid2[i, 0];
 Divid[i + iCount, 1] = Divid2[i, 1];
 }
 iCount += DividCount2;
 for (int i = 0; i < DividCount3; i++)
 {
 Divid[i + iCount, 0] = Divid3[i, 0];
 Divid[i + iCount, 1] = Divid3[i, 1];
 }
 iCount += DividCount3;
 for (int i = 0; i < DividCount4; i++)
 {
 Divid[i + iCount, 0] = Divid4[i, 0];
 Divid[i + iCount, 1] = Divid4[i, 1];
 }

100

 iCount += DividCount4;
 for (int i = 0; i < DividCount5; i++)
 {
 Divid[i + iCount, 0] = Divid5[i, 0];
 Divid[i + iCount, 1] = Divid5[i, 1];
 }
 iCount += DividCount5;
 for (int i = 0; i < DividCount6; i++)
 {
 Divid[i + iCount, 0] = Divid6[i, 0];
 Divid[i + iCount, 1] = Divid6[i, 1];
 }
 int DividCount = 0;
 DividCount = DividCount1 + DividCount2 + DividCount3 + DividCount4 +
DividCount5 + DividCount6;
 int iDividArr = (DividCount - 1) / 2;
 _maxParallelDepth = DetermineMaxParallelDepth();
 MergeSort(numbers, aux, Divid, 0, DividCount - 1, 1);

 }
 public static int FindRuns(int[] a, int[,] Divid, int lo, int hi)
 {
 Debug.Assert(lo < hi);
 int DividCount = 0;
 int minRun = 8;
 int nRemaining = hi - lo;
 while (lo < hi)
 {
 int runHi = lo + 1;
 if (runHi == hi)
 {

101

 Divid[DividCount, 0] = lo;
 Divid[DividCount, 1] = (hi - 1);
 DividCount++;
 return DividCount;
 }
 // Find end of run, and reverse range if descending
 if ((a[runHi++] < a[lo]))
 { // Descending
 while (runHi < hi && (a[runHi] <= a[runHi - 1]))
 runHi++;
 Array.Reverse(a, lo, runHi - lo);
 // reverseRange(a, lo, runHi);
 }
 else
 { // Ascending
 while (runHi < hi && (a[runHi] >= a[runHi - 1]))
 runHi++;
 }

 int runLen = runHi - lo;

 // If run is short, extend to min(minRun, nRemaining)
 if (runLen < minRun)
 {
 int force = nRemaining <= minRun ? nRemaining : minRun;
 binarySort(a, lo, lo + force, lo + runLen);
 runLen = force;
 }

 Divid[DividCount, 0] = lo;

102

 Divid[DividCount, 1] = runLen + lo - 1;
 DividCount++;
 lo += runLen;
 nRemaining -= runLen;
 }
 return DividCount;
 }

 public static void MergeSort(int[] array, int[] aux, int[,] Divid, int iStart, int
iEnd, int recursionDepth)
 {

 if (iStart >= iEnd)
 return;
 int middle = (iStart + iEnd) / 2;
 if (recursionDepth <= _maxParallelDepth)
 {
 Task task1 = new Task(() => MergeSort(array, aux, Divid, iStart,
middle, recursionDepth + 1));
 Task task2 = new Task(() => MergeSort(array, aux, Divid, middle +
1, iEnd, recursionDepth + 1));

 task1.Start();
 task2.Start();
 task1.Wait();
 task2.Wait();
 }
 else
 {
 MergeSort(array, aux, Divid, iStart, middle, recursionDepth + 1);
 MergeSort(array, aux, Divid, middle + 1, iEnd, recursionDepth + 1);

103

 }
 MergeTechnique.Merge(array, aux, Divid[iStart, 0], Divid[middle, 1],
Divid[iEnd, 1]);

 }
 public static void binarySort(int[] a, int lo, int hi, int start)
 {
 Debug.Assert(lo <= start && start <= hi);
 if (start == lo)
 start++;
 for (; start < hi; start++)
 {
 int pivot = a[start];

 // Set left (and right) to the index where a[start] (pivot) belongs
 int left = lo;
 int right = start;
 Debug.Assert(left <= right);
 /*
 * Invariants:
 * pivot >= all in [lo, left).
 * pivot < all in [right, start).
 */
 while (left < right)
 {
 int mid = (left + right) / 2;
 if (pivot < a[mid])
 right = mid;
 else
 left = mid + 1;
 }

104

 int n = start - left;
 switch (n)
 {
 case 2:
 a[left + 2] = a[left + 1];
 break;
 case 1:
 a[left + 1] = a[left];
 break;
 default: Array.Copy(a, left, a, left + 1, n); break;
 }
 a[left] = pivot;
 }
 }
 }
}

