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 الـمـلـخــص

 

ارزمية الدمج واحد من اشير الخوارزميات المنتشرة في تقنية الترتيب، الإ أنيا تعاني تعتبر خو 
من بعض المشاكل اىميا الزمن المستغرق في تنفيذ الخوارزمية.وكنتيجة ليذه المشكمة، طورت 
العديد من الخوارزميات التي حسنت في زمن تنفيذ الخوارزمية وبالاخص عندما تكون البيانات 

 α-stack)         ستاك-ألفا خوارزميةقاً )الحالة المثالية(. من ىذه التحسينات، مرتبة ساب
algorithm( التي تعتمد عمى دمج التراتيب الجزئية الموجودة في البيانات والمسماة )Runs)  .

استطاعت أن تحسن في اداء خوارزمية الترتيب  ستاك-ألفاوعمى الرغم من أن خوارزمية 
ستاك -الأصمية وحل مشكمة الترتيب في الحالة المثالية الا أن القصور واضح في خوارزمية ألفا

 عند تطبيقيا في البرمجة المتوازية وكذلك عند تعامميا مع البيانات العشوائية )الحالة الاسوء(.

( والتي اخذت DRSديدة اسميناىا تقسيم التراتيب )في ىذه الدراسة، قمنا بتطوير خوارزمية ج
بالاضافة الى مميزات خوارزمية الدمج الاصمية. استطاعت  ستاك-مميزات خوارزمية ألفا

قدرتيا  ىخوارزمية تقسيم التراتيب أن تقمل من الزمن المستخدم في عممية الترتيب بالإضافة ال
 .عمى التعامل مع البرمجة المتوازية بكفائو عالية

وقد اظيرت النتائج الأفضمية لخوارزمية تقسيم التراتيب مقارنة بالخوارزميات المختارة في 
عندما كانت البيانات عشوائية بشكل –المقارنة حيث وصمة نسبة التحسين في زمن التنفيذ 

 % في البرمجة المتوازية.03% في البرمجة المتسمسمة و نسبة 03إلى  -كامل
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Abstract  
 

One of the most popular sort algorithms is Merge sort, although it 
suffers from some problems, the main problem of which is time 
complexity. For this reason, many algorithms were developed to 
enhance merge sort time complexity, especially in the best case. 
One of the natural merge sort algorithms enhancement is α-stack 
sort algorithm which has better performance than original merge sort 
and overcomes the merge sort best case problem. However, merge 
sort is still a powerful algorithm in parallel processing and external 
sort. In this study, a new version of merge sort called Divide-Runs 
Sort (DRS) algorithm is developed. The DRS algorithm takes 
advantage of original merge sort and α-stack sort algorithm. The 
DRS reduces time complexity of original merge sort and α-stack 
sort algorithm and it overcomes a parallel processing problem in α-
stack sort algorithm and the best case problem in merge sort. The 
results show noticeable enhancement in time complexity -when 
dataset is random- comparing with benchmarks which reaches to 
30% in sequential processing and 39% in parallel processing. 
Keywords:  Sorting, Merge sort, Adaptive sort, Natural merge sort, 

parallel sorting, α-stack sort.
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1. Introduction 
 

This Chapter explores the motivation of study and problem 
statement. In addition, other sections will be described such as, 
objectives, methodology, benchmark selection, and others. 
 

1.1.Motivation 
 

Merge sort and its modifications are very important algorithms in 
sorting. They are found in many fields of science such as Database, 
distributed systems, operating systems, and others [1] [2] [3]. One 
of Merge sort versions has been Python's standard sorting algorithm, 
and it is also used to sort arrays of non-primitive type in Java SE 7, 
on the Android platform, and in GNU Octave [4]. Although there are 
many versions of merge algorithms, sorting problem has attracted a 
great deal of research because efficient sorting is important to 
optimize the use of other algorithms and to save wasted time [5].  
Moreover, parallel computers are appearing on our desktops. The 

advent of multi-core causes a major change in our approach to 
software. Parallel sort algorithms are highly useful in processing 
huge volumes of data in quick time. For this reason, the need of 
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parallel sort algorithms is very important, especially when parallel 
sort algorithm is difficult to implement [6] [7]. 
 

1.2.Problem Statement 
 

Since the recursive sort algorithms cannot recognize the nature of 
input data, it cannot decide whether these input data are sorted or 
not. For this reason, the algorithm would have poor performance 
especially in the best case. Such drawbacks in the original merge 
sort motivate many researchers to start modification of the original 
merge sort such as [8] [9] [4].These modifications which are called 
natural merge sort algorithms take place based on the concept of 
the existing order of the input called Runs. 
Unfortunately, these algorithms including α-stack sort algorithm 

suffer from some problem: 
 The way of merge Runs management. 

α-stack sort algorithm uses stack to manage Runs and finds 
efficient ways to merge them. Stack effects badly on 
algorithms because of the time for managing stack. 

 Difficulty of α-stack sort algorithm parallelization. 
Since the size of unsorted set is decreasing with every 
iteration, it is difficult to parallelize sort algorithms that use 
iteration [6]. 
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1.3. Research Objectives 
 

The main objectives of this study are : 

1. To design a new sort algorithm called DRS algorithm based on 
original merge sort algorithm and α-stack sort algorithm. 

2. To implement DRS algorithm in terms of sequential process as 
well as parallel process.  

 

1.4.Research Methodology 
 

Different methodologies have been used in this study as the 
following: 

 Literature Review 

 Building a model 
A new model designed based on existing merge sort 
algorithms and its modifications. 

 Setting up an experiment  

 Analysis of experiment results and measuring performance. 
This study was evaluated empirically using MS visual studio 
C#. Quantitative data has been measured in terms of 
execution time. Many different scenarios have been tested in 
different dataset size. 
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1.5.Scope of the Study 
 

The scope of this study is to develop a new sort algorithm which 
reduces time complexity in α-stack sort algorithm rather than space 
complexity and save wasted time in managing Runs. 
In parallel processing, we will choose a well-known model and 

apply our proposed algorithm on it. Chosen model will be modified 
according to needs on proposed algorithm.  
 

1.6.Benchmark Selection  
 

Timsort algorithm [9] is a popular and standard algorithm for many 
platform and programing languages. On the other hand, α-stack 
algorithm [8] is one of new versions of natural merge sort. Buss and 
Knop [4] introduce new stable natural merge sort algorithms and 
compared these algorithms with Timsort algorithm and α-stack 
algorithm. Therefore, Timsort and α-stack algorithms have been 
chosen to be the benchmark of this study. 
On the other hand, Uyar claimed that [6] parallel processing is 

difficult to apply on iteration sort algorithm and recursive algorithm 
are better choices. For the best of our knowledge, Merge sort is 
one of the powerful algorithms in parallel sorting; therefore, it has 
been selected to be the benchmark in parallel processing. We 



5 
 
 

applied the same model that is implemented in parallel Sort method 
of java.utils.Arrays class of Java Library on both algorithms. 
DRS algorithm will be compared with benchmarks in terms of 

execution time. 
 

1.7.Contributions  
 

This study proposes a new natural merge sort algorithm, which 
was developed base on original and natural merge sort. In 
sequential processing, a new model has been designed to take 
advantage of divide and conquer technique as well as Runs. The 
main contribution is developing a new natural merge sort which 
reduces time complexity in natural merge sort and apply on 
sequential and parallel processing. 
The new algorithm shows promising results compared to 

benchmarks –in random dataset- which reaches to 30% in 
sequential processing and 39% in parallel processing. 
1.8.Thesis Organization 
 

The rest of this study is organized in 4 chapters. Chapter 2 is 
dedicated to literature review and related work. Sequential and 
implementation of parallel proposed algorithm are explored in 
chapter 3. In Chapter 4, analysis and performance measure are 
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described. Finally, summary and conclusion are in Chapter 5. 
 

 

2. Literature Review and Related Work 
 

In this chapter, main concepts of sorting such as classification of 
sort algorithms and well-known sort algorithms were discussed. 
This concepts help readers and beginners to gain overall views of 
sorting techniques. Some sort algorithms in terms of sequential and 
parallel processing were discussed. Merge sort and some of its 
modification were discussed intensively. 
2.1.Sort Algorithms 
 

One of the most popular and important techniques in computer 
science is sorting. It is a permutation function, which operates on 
elements [10]. Sorting algorithms are found in many places in 
computer science. We can find sort applications in operating 
systems [11], database systems [2], image processing applications 
[3], programming languages, data communications, pattern matching 
[12], business applications, and applications that use large 
databases may benefit from efficient sorting algorithms. For 
example, computational biology, and search engines are privileged 



7 
 
 

fields that need sorting in the geographic information system 
[13].Also, it plays an important role in teaching of algorithm analysis, 
data structure and programming [14].  
For consequences, many algorithms have been developed. There 

are many different sorting algorithms and even more ways in which 
they can be implemented [15].Some algorithms work perfectly on 
number. Some can be implemented in parallel processing whereas 
other work only on sequential process. Each algorithm has its 
advantages and disadvantages. For example, Merge sort is well-
known to perform very well in most practical situations, regardless 
of the fact that many other sorting algorithms have a better best-
case behavior. For Many years, Researchers show big interest in 
developed and enhanced sort algorithm. In addition, with evaluation 
of multi-core processes, researchers apply sort algorithms and 
design them to work in parallel.  
 

2.2. Factors affecting the Classification of Sort Algorithms 
 

Sorting algorithms can be classified with various factors [15]. 
These classifications end up being important factors for 
programmers when they are writing a sorting algorithm or choosing 
which one to implement. In this section we’ll focus on most 
important factors. 
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2.2.1.Time Complexity 
 

The main factor and easiest way  that classifies the sorting 
algorithm is time complexity or computational complexity. In general, 
it related to how much time an algorithm need to sort dataset. The 
time complexity analysis is a theoretical process to categorize the 
algorithm into a relative order among function by predicting and 
calculating approximately the increase in running time of an 
algorithm as its input size increases. For instance a program can 
take seconds, hours or even years to complete the execution, 
usually this depends upon the particular algorithm used to construct 
the program [15] [16]. To ensure the execution time of an algorithm 
should anticipate the worst case, average case and best case 
performance of an algorithm. 

 Worse case:  The worst-case analysis is the greatest amount 
of running time that an algorithm needed to solve a problem 
for any input of size n. The worst-case running time of an 
algorithm gives us an upper bound on the computational 
complexity. 

 Best case: The best-case analysis is the least amount of 
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running time that an algorithm needs to solve a problem for 
any input of size n. In this the running time of an algorithm 
gives us a lower bound on the computational complexity. In 
most algorithms’ analysis of the best case not consider 
because it is not useful. However, in sort technique, it 
considers as advantage or disadvantage for sort algorithm. 

 Average case: The average case analysis is the average 
amount of running time that an algorithm needed to solve a 
problem for any input of size n. It is difficult to determine 
average case for algorithm. In general, the average case 
running time is considered as bad as the worst case and 
analysis as same way as the worst case. 

 

2.2.2.Space Complexity 
 

Space complexity of an algorithm is another factor that considers 
seriously when selecting an algorithm. There are two types of 
classifications for the space complexity of an algorithm: in-place or 
out-of-place. 
An in-place algorithm is one that operates directly on the input 

data. The danger with this is that the data is getting completely 
transformed in the process of transforming it, which means that the 
original dataset is effectively being destroyed! However, it is more 
space-efficient, because the algorithm only needs a tiny bit of extra 
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space in memory — usually a constant amount of space, or O(1) —
 which can be helpful if you don’t have enough memory to spare. 
In contrast, out-of-place algorithms don’t operate directly on the 

original dataset; instead, the make a new copy, and perform the 
sorting on the copied data. This can be safer, but the drawback is 
that the algorithm’s memory usage grows with input size [17]. 
 

2.2.3.Stability 
 

A stable algorithm is one that preserves the relative order of the 
elements; if the keys are the same, we can guarantee that the 
elements will be ordered in the same way in the list as they 
appeared before they were sorted [15]. For instance if there are two 
elements a[0] and a[1] with the same value and with a[0] show up 
before a[1] in the unsorted list, a[0] will also show up before a[1] in 
the sorted list. 
 

2.2.4.Comparison and Non-Comparison Based Algorithms 
 

 It’s possible to classify a sorting algorithm based on how it 
actually does the job of sorting elements. Any sorting algorithm that 
compares two items  -or a pair - at a time in the process of sorting 
through a larger dataset is referred to as a comparison sort. This 
subset of algorithms use some type of comparator (for example: >= 
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or <=) to determine which of any two elements should be sorted 
first [17]. 
Sorting algorithms that do not use any type of comparators to do 

their sorting are referred to as non-comparison sorts [17]. 
  

2.2.5.Recursive and Non-Recursive 
 

A recursive algorithm means it calls itself with smaller input values, 
and which obtains the result for the current input by applying simple 
operations to the returned value for the smaller input. Usually the 
problem can be solved utilizing solutions to smaller variants of the 
same problem, and the smaller variants reduce to easily solvable 
instance, then one can use a recursive algorithm to solve that 
problem. Quick sort and merge sort are examples for recursive 
algorithms while insertion sort and selection are non-recursive since 
it does not follow these steps [15]. 
 

2.2.6.Internal Sort Vs External Sort 
 

Because our machines can sort through large datasets fairly easily, 
it’s common to have some applications that have to sort through 
huge collections of data. In some cases, this can actually amount to 
more data than can be maintained in the machine’s main memory 
(or RAM).The way that an algorithm has to store data while its 
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sorting through records is yet another way that we can classify 
sorting algorithms. 
If all of the data that needs to be sorted can be kept in main 

memory, the algorithm is an internal sorting algorithm. However, if 
the records have to be stored outside of main memory —in other 
words, stored in external memory, in either a disk or a tape  — the 
algorithm is referred to as an external sorting algorithm [17]. 

 

2.2.7.Adaptability 
 

Whether or not the pre-sorted of the input affects the running time. 
Adaptive sort takes advantage of the existing order of the input to 
try to achieve better times, so that the time taken by the algorithm 
to sort is a smoothly growing function of the size of the 
sequence and the disorder in the sequence. In other words, the 
more presorted the input is, the faster it should be sorted. 
Algorithms that take this into account are known to be adaptive [18]. 
 
The following table depict from [19] which shows some sort 

algorithms and its classification  
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Table 1: Sort algorithms and its classification 

2.3. Survey of Sorting Algorithms 
 

Because the importance of sort technique, many algorithms had 
been designed. Many literatures have been describe sorting 
algorithms like [12] [15] [20] [21] [22]. In this section, main and 
popular algorithms discuss. 

  Time Complexity    

  Best Worst Avg. Space Recursiv
e 

adaptive 

 
Co

mp
ar

iso
n 

So
rt 

  

Bubble Sort O(n) O(n^2) O(n^2) O(1) No Yes 
Selection Sort O(n^2) O(n^2) O(n^2) O(1) No Yes 
Insertion Sort O(n) O(n^2) O(n^2) O(1) No Yes 
Quick Sort O(n.lg(n)) O(n^2) O(n.lg(n)) O(1) Yes No 

Randomized 
Quick Sort O(n.lg(n)) O(n.lg(n)) O(n.lg(n)) O(1) Yes 

No 

Merge Sort O(n.lg(n)) O(n.lg(n)) O(n.lg(n)) O(n) Yes No 
Tim Sort O(n) O(n.lg(n)) O(n.lg(n)) O(n) No Yes 

Heap Sort O(n.lg(n)) O(n.lg(n)) O(n.lg(n)) O(1) No No 

No
n-

Co
mp

ar
iso

n 
so

rt Counting Sort O(n+k) O(n+k) O(n+k) O(n+2^k) No No 

Radix Sort O(n.k/s) O(2^s.n.k/s) O(n.k/s) O(n) No No 

Bucket Sort O(n.k) O(n^2.k) O(n.k) O(n.k) No 
No 
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2.3.1. Bubble sort 
 

Bubble sort is the simplest and popular sort algorithm. It compares 
two consecutive elements and swaps them if needed. This process 
continue until no need for swapping [12] [21] [22]. 
 
2.3.2. Selection sort 
 
Selection sort is another well-known sorting technique that scans 

the list/array to find the smallest item, puts it at the first location in 
the list/array, and then scans the list for the second smallest item, 
puts it in the second location, then third smallest and so forth until 
reaches the largest item in the list putting it at the last location of 
the list. It has O(n²) complexity, inefficient for the larger lists or 
arrays [23]. 
 
2.3.3. Insertion sort 
 

Insertion sort is a simple and efficient sorting algorithm useful for 
small lists and mostly sorted list. It works by inserting each element 
into its appropriate position in the final sorted list. For each insertion 
it takes one element and finds the appropriate position in the sorted 
list by comparing with neighboring elements and inserts it in that 
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position. This operation is repeated until the list becomes sorted in 
the desired order. Insertion sort is an in- place algorithm and 
needed only a constant amount of additional memory space. It 
becomes more inefficient for the greater size of input data when 
compared to other algorithms. However, in general insertion sort is 
frequently used as a part of more sophisticated algorithms [15]. 
 
2.3.4. Merge Sort 
 

Merge sort [24] [25]  uses the divide and conquer approach to 
solve a given problem. It works by splitting the unsorted array into n 
sub array recursively until each sub array has 1 element. In general, 
an array with one element is considered to be sorted. Consequently, 
it merges each sub array to generate a final sorted array. The 
divide and conquer approach works by dividing the array into two 
halves such as sub array and follows the same step for each sub 
array recursively until each sub array has 1 element. Later it 
combines each sub array into a sorted array until there is only 1 
sub array with desired order. Merge sort is a stable sort meaning 
that it preserves the relative order of elements with equal key [15]. 
The figure1 show how merge sort works. 
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Mer
ge 
sort 
is 
powe
rful 
sort algorithm especially when working in parallel [26] [1], linked list, 
and external sort [27]. The algorithm for Merge sort is as follows. 

Algorithm 1: Merge-Sort ( A ,p , r ) 

1 3 4 6 2 7 8 9 

2 7 8 9 1 3 4 6 

8 9 2 7 4 6 1 3 

9 8 7 2 6 4 3 1 

8 9 2 7 4 6 1 3 

2 7 8 9 1 3 4 6 

6 7 8 9 1 2 3 4 

Figure 1: Merge sort Example 
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Merge sort suffers from two critical problems. First, it is not in-
place algorithm, which need more space or auxiliary array to help in 
sort elements. These problem cost O(n) complexity in space 
whereas space complexity is O(1) for others sort algorithms. 
Nevertheless, in parallel and in external sort, auxiliary array give 
merge sort powerful in sort elements. Second problems, merge sort 
takes O(nlogn) complexity in all case even in best case. That mean, 
if elements already sorted merge sort cannot recognized that.  
Many version of merge sort algorithms developed to solve space 

and time complexity. For Space Complexity, In-place Merge sort 
algorithm first published by Kronrod [28] showing that merging is 
possible without a workspace. After that, Trabb Pardo [29]  
presented the first stable in-place merging algorithm. Later Salowe 
and Steiger [30] observed an easy-to-correct error in the algorithm 
of Kronrod and made some simplifications to stable merging. 
According to the analysis of Pasanen [31], the algorithms developed 
by Huang and Langston [32] [33] have the lowest complexity with 

If p < r then 
        q = ( p + r ) / 2 
        Merge-Sort ( A , p , q ) 
        Merge-Sort ( A , q+1 , r ) 
        Merge ( A , p , q , r) 
End If    
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respect to the number of moves if a linear number of comparisons 
is approved. 
For best case problem, the widely used solution is natural merge 

sort. It finds the sorted sub-lists by detecting consecutive runs of 
entries in the input which are already in sorted order. Natural merge 
sorts were first proposed by Knuth [12].There are many algorithms 
which merging strategies combined with decomposition into Runs 
such as TimSort [9],α-Stack sort [8], ShiversSort 
[34],AugmentedShiversSort [4], AdaptiveShiversSort [35], 
MinimalSort [36], PeekSort and PowerSort [37], NeatSort 
[38],Patience sorting [39], melsort [40], Splitsort [41], and 2-merge 
sort and α-merge sort [4]. 
 

2.3.5. TimSort  
 

Timsort [9] is a hybrid stable sorting algorithm, derived from merge 
sort and insertion sort, designed to perform well on many kinds of 
real-world data. It uses techniques from Peter McIlroy [42] and 
implemented by Tim Peters in 2002 for use in the Python 
programming language. Timsort has been Python's standard sorting 
algorithm since version 2.3, and it is also used to sort arrays of 
non-primitive type in Java SE 7, on the Android platform, and in 
GNU Octave [4]. Timsort has worst-case runtime O(n log n), but is 
designed to run substantially faster on inputs which are partially 
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pre-sorted by using intelligent strategies to determine the order in 
which merges are performed. It is quite a strongly engineered 
algorithm, but its high-level principle is rather simple. The sequence 
S to be sorted is decomposed into monotonic Runs (i.e., non-
increasing or non-decreasing subsequences of S), which are 
merged pairwise according to some specific rules [8]. Concurrently 
with the search for runs, the runs are merged with merge technique. 
Except where Timsort tries to optimize for merging disjoint runs in 
galloping mode, Runs are repeatedly merged two at a time, with the 
only concerns being to maintain stability and merge balance [43]. 
Looking for balanced merges, Timsort considers three runs on the 

top of the stack, X, Y, Z, and maintains the invariants as shown in 
figure 2:  

i. |Z| > |Y| + |X| 
ii. |Y| > |X| 

 

 

Figure 2: Stack and Merge Runs in Timsort 

 



20 
 
 

The runs are inserted in a stack. If |Z| ≤ |Y| + |X|, then X and Y 
are merged and replaced on the stack. In this way, merging is 
continued until all runs satisfy i. |Z| > |Y| + |X| and ii. |Y| > |X|. 
Timsort performs an almost in-place merge sort, as actual in-

place merge sort implementations have a high overhead. First 
Timsort performs a binary search to find the location in the first run 
of the first element in the second run, and the location in the 
second run of the last element in the first run.this call Individual 
merges [43]. 
An individual merge keeps a count of consecutive elements 

selected from the same input set. The algorithm switches to 
galloping mode when this reaches the minimum galloping threshold 
(min_gallop) in an attempt to capitalize on sub-runs in the data. 
The success or failure of galloping is used to adjust min_gallop, as 
an indication of whether the data does or does not contain sufficient 
sub-runs [43]. 

http://www.wikiwand.com/en/Binary_search
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Figure 3: Elements (pointed to by blue arrow) are compared and the smaller element is moved 
to its final position (pointed to by red arrow). 

When merging is done right-to-left, galloping starts from the right 
end of the data, that is, the last element. Galloping from the 
beginning also gives the required results, but makes more 
comparisons [43]. 

 

Figure 4:  All red elements are smaller than blue (here, 21).Thus they can be moved in a 
chunk to the final array. 

 
 

Galloping is not always efficient. In some cases galloping mode 
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requires more comparisons than a simple linear search. While for 
the first few cases both modes may require the same number of 
comparisons, over time galloping mode requires 33% more 
comparisons than linear search to arrive at the same results [43]. 
 

2.3.6. α-Stack sort  
 

One of the newest enhance on merge sort is an α-stack algorithm 
[8]  which enhanced TimSort by improving stack that hold Runs. It 
consists in adding the runs one by one in a stack, and in performing 
merges on the go according some rules. This rules are always local 
as they only involve the runs at the top of the stack. A stack 
strategy relies on a stack X of runs that is initially empty. During the 
first stage, at each step, a run is extracted from R and added to the 
stack. The stack is then updated, by merging runs, in order to 
assure that some conditions on the top of the stack are satisfied. 
These conditions and the way runs are merged when they are not 
satisfied define the strategy. The second stage occurs when there is 
no more run in R: the runs in X are then merged pairwise until only 
one remains [8]  . 
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Figure 
5: 

Statues 
of stack 

 

α-Stack Sort can be seen as a stack-merge algorithm of degree 2. 
It depends on a fixed parameter α > 1, and consists only in one 
rule which is |Y | > α |Z|. If it is violated, α consists in merging Y 
and Z [8]  . 
 

 

 

The table2 depicts from [8] to show average of execution time 
between α-stack and TimSort.  

 

Table 2: Comparing between TimSort and α-Stack algorithms 

Algorithm 2: Main Loop of α-StackSort 
X=0 
While R!=0 do 
        R=pop(R) 
        Append R to X 
        While X violates the rule |Y|>=α|Z| do 
             Merge Y and Z 
        End While 
End While   
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2.3.7. Quick Sort 
 

Quick sort [21] [22] [44] is the fastest general purpose internal 
sorting algorithm on the average among other sophisticated 
algorithms. Unlike merge sort it does not require any additional 
memory space for sorting an array. For the reason that it is widely 
used in most real time application with large data sets. Quick sort 
uses divide and conquer approach for solving problems. Quick sort 
is quite similar to merge sort. It works by selecting elements from 
unsorted array named as a pivot and split the array into two parts 
called sub arrays and reconstruct the former part with the elements 
smaller than the pivot and the latter with elements larger than the 
pivot. This operation is called as partitioning. The algorithm repeats 
this operation recursively for both the sub arrays. In general, the 
leftmost or the rightmost element is selected as a pivot. Selecting 
the left most and right most element as pivot was practiced in the 
early version of quick sort and this causes the worst case behavior, 
if the array is already sorted. Later it was solved by various 
practices such as selecting a random pivot and taking the median of 
first, middle and last elements. Quick sort is an in-place algorithm 
and it works very well, even in a virtual memory environment [15]. 

 

2.3.8. Radix Sort 
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Radix sort [45] is a linear sorting algorithm and works without 
comparing any element unlike other sorting methods such as 
insertion sort and quick sort. Radix sort works by sorting data 
elements with keys. Keys are usually represented in integers mostly 
binary digits and sometimes it considers an alphabet as keys for 
strings. Radix sort works by sorting each digit on the input element 
and for each of the digits in that element. In general, it might start 
with least significant digit and then followed by next significant digit 
till the most significant digit. This process somewhat considered to 
be unreasonable most of the time. Radix sort is a stable sort for the 
reason that it preserves the relative order of element with equal 
keys [15].  
There are two classification of radix sort such as LSD and MSD. 

The Least significant digit method works by  processing the integer 
representation starting from the least digit and shift in order to 
obtain the most significant digit. Likewise the Most significant digit 
works the opposite way [15]. 
2.4. Parallel sorting 
 

Parallel sorting has been studied extensively during the past years. 
Sorting is a difficult problem to parallelize. Since the size of 
unsorted set is decreasing with every iteration, it is difficult to 
parallelize it. The recursive sorting algorithms are better suited for 
parallelization. They divide the unsorted data set into multiple 
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segments and work on them independently [6] .Parallel sorting 
algorithms can be divided into two categories [46]: 
 Partition-based Sorting: First, use partition keys to split the 

data into disjoint buckets. Second, sort each bucket 
independently, and then concatenate the sorted buckets. 
 Merge-based Sorting: First, partition the input data into 
data chunks of approximately equal size and sort these data 
chunks in different processors. Second, merge the data across 
all of the processors. 

With evolution of Multi-core processing, Many sorting algorithms 
have been develop to implement on parallel in GPU [13] [46] [26] 
and CPU [1] [6].In this section, the most popular parallel sorting 
algorithms discuss. 
2.4.1. Parallel Merge Sort 
 

A parallel merge sort algorithm proposed by Varman et al. [47] 
and popularized by the developers of the GNU Multi-Core Standard 
Template Library (MCSTL) [48]. In this algorithm, first the unsorted 
array is divided by the number of threads and each partition is 
sorted by one thread. Then all threads take part in merging the 
sorted partitions. Parallel merging is a complex process. The 
parallel version of the merge sort is shown at Figure 6 for four cores 
as implemented in parallel Sort method of java.utils.Arrays class of 
Java Library [6]. 
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Figure 6: Parallel merge sort with 8 threads 

It first divides the unsorted dataset recursively into two. This 
process continues until the number of unsorted subsets reaches to 
the number of cores in the system. Then, each core sorts one 
unsorted subset independently in parallel. They may use any single 
CPU sorting algorithm to sort their segments. Once, each thread is 
done sorting their parts, the process of merging starts. Each parent 
thread merges the two sorted subsections from its children threads. 
As the final step, the root thread merges two subsections from its 
children threads and produces the sorted dataset. In this algorithm, 
all four cores are utilized fully when sorting their subsections. 
However, when merging is performed, system utilization is reduced 
significantly. Only two cores are used at the first round of merge 
operations and the other two cores sit idle. In the final stage of the 
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merge operation, only one core is used and the other three cores sit 
idle. As the number of cores increases in a system, the utilization of 
cores is reduced even more during the merge operations. Therefore, 
the primary objective of parallel merge sort algorithms has been to 
try to distribute the load of merging among more cores [6]. 

2.4.2. Bitonic Sort 
Bitonic Sort, a merge-based algorithm, was one of the earliest 

procedures for parallel sorting. It was introduced in 1968 by Batcher 
[49]. The basic idea behind Bitonic Sort is to sort the data by 
merging bitonic sequences. A bitonic sequence increases 
monotonically then decreases monotonically.  Bitonic Sort can be 
generalized for n/p > 1, with a complexity of Θ(n lg2 n). Adaptive 
Bitonic Sorting, a modification of Bitonic Sort, avoids unnecessary 
comparisons, which results in an improved, optimal complexity of 
Θ(n lg n) [50]. 
The algorithm consists of two parts. First, the unsorted sequence 

is built into a bitonic sequence; then, the series is split multiple 
times into smaller sequences until the input is in sorted order. The 
bitonic split is a procedure that cuts one bitonic sequence into two 
smaller ones, where all the elements of the first sequence are less 
than or equal to the ones in the second. Looking at the example 
below, a bitonic sequence is divided between its two halves, and 
the n th element in each part is compared with each other. If they 
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are out of order, they are swapped. Applying this procedure 
repeatedly onto the smaller lists, the result is a sorted sequence in 
ascending order [51]. 
Before the sorting can occur, the original sequence must first be 

transformed into a bitonic one. Note that two numbers by 
themselves are a bitonic sequence; from that, the sequence can be 
partitioned into smaller bitonic ones and then merged together.  
The building algorithm is a variation of the bitonic split: two 

adjacent bitonic sequences are split and sorted in ascending order, 
the next two in descending order, and so on. The original two 
sequences are now a single bitonic sequence. This procedure 
continues until the entirety of the input has been converted.  
 

2.4.3. Sample Sort 
 

Sample Sort is a popular and widely analyzed splitter-based 
method for parallel sorting [52], [53]. This algorithm acquires a 
sample of data of size s from each processor, then combines the 
samples on a single processor. This processor then produces p−1 
splitters from the sp-sized combined sample and broadcasts them 
to all other processors. The splitters allow each processor to send 
each key to the correct final destination immediately [54]. The 
algorithm is simple and executes as follows. 

i. Each processor sorts its local data. 
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ii. Each processor selects a sample vector of size p−1 from its 
local data.  

iii. The samples are sent to and merged on processor 0, 
producing a combined sorted sample  

iv. Processor 0 defines and broadcasts a vector of p−1 splitters 
of the combined sorted sample. 

v. Each processor sends its local data to the appropriate 
destination processors, as defined by the splitters, in one 
round of all-to-all communication. 

vi. Each processor merges the data chunks it receives. 
 

2.4.4. Radix Sort 
 

Radix Sort is not a comparison-based sort. However, it can be 
parallelized simply by assigning some subset of buckets to each 
processor [55] [56].In addition, it can deal with uneven distributions 
efficiently by assigning a varying number of buckets to all 
processors every step. This number can be determined by having 
each processor count how many of its keys will go to each bucket, 
then summing up these histograms with a reduction. Once a 
processor receives the combined histogram, it can adaptively assign 
buckets to processors [54]. 
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3. Proposed DRS Algorithm  
 

This chapter describes different phases of the proposed algorithm 
called DRS such as design algorithm and implementation in terms 
of sequential and parallel processing. The proposed algorithm 
named Divide-Runs sort algorithm (DRS) is developed based on 
Divide and conquer technique as well as Runs. DRS takes 
advantage of original merge sort as well as natural merge sort. With 
the evaluation of multi-core processes, the advent of multi-core 
caused a major change in our approach to software. DRS is one of 
rare sort algorithm that can be applied on parallel processing, which 
is highly useful in processing huge volumes of data in quick time. 
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3.1. Design Sequential DRS Algorithm 
 

3.1.1.Divide and Conquer technique  
 

Divide and conquer (D&C) is an algorithm design paradigm based 
on multi-branched recursion. A divide and conquer algorithm works 
by recursively breaking down a problem into two or more sub-
problems of the same type, until these become simple enough to be 
solved directly. The solutions to the sub-problems are then 
combined to give a solution to the original problem [57]. A typical 
Divide and Conquer algorithm solves a problem using the following 
three steps: 
1. Divide: Break the problem into sub-problems of the same type. 
2. Conquer: Recursively solve these sub-problems. 
3. Combine: Combine the solution of sub-problems. 
 

3.1.2. Runs  
 

Run is sub-order elements in the input array. At the same time, 
the order is non-descending or strictly descending, i.e. “a0 ≤ a1 ≤ 
a2 ≤ …» or «a0 > a1 > a2 > …”. 
In some sort algorithms [8] [9] [4], sorting starts by looking for 

Runs which gives advantages to sort algorithm to reduce time 
complexity for sorting, especially if array is sorted or semi-sorted. 
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For example, for the following array  
 

1 2 3 4 5 3 4 9 7 6 5 4 3 2 1 
 
sorting algorithm starts by determining runs as follows   
 

1 2 3 4 5 3 4 9 7 6 5 4 3 2 1 
Run 1 Run 2 Run 3 

N=15 
 
 

Then, sorting operation works based on Runs which use merge 
two sorted arrays.  

 

3.1.3. Divide-Runs Model  
 

As mentioned before, DRS is designed to take advantage of two 
algorithms: first, Natural merge sort algorithms which decomposes 
elements to Runs to solve the best case problem , second,  original 
Merge sort algorithm which uses divide-conquer technique. For 
consequence, a new model was designed to combine advantages 
of merge sort and natural merge sort. The figure 7 shows the 
proposed model: 

 

 

 

Get Data Elements 

Decomposing 

Elements to Runs 

Allocate Runs to Helper 
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DRS model consists of five steps follows:  
1. Get data elements to main array. 
2. The elements are split into a run decomposition. 
3. Runs allocate to Helper array to prepare for divide process. 
4. Runs divide according Helper array. 
5. Runs merge using merge technique. 

 

3.1.4. Divide-Runs sort algorithm Design  
 

First, Divide-Runs algorithm looks for runs in given array . Then 
first and last index in runs are stored in Helper array. Helper array 
contains two columns. The first column stores the first index of Run 
and the second column stores for last index of Run. For example, if 
we have an array with following elements: 
 

Figure  7 : Divide-Runs Model
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1 2 3 4 5 3 4 9 7 6 5 4 3 2 1 
Run1 (1-5) Run2(6-8) Run3 (9-15) 

N=15 
 

This Given array contains 3 Runs ,The first one starts with index 1 
and ends with index 5.The second starts with index 6 and ends with 
index 8.The third run starts with index 9 and ends with index 15. 
 All found Runs will be stored in 2-D array with 2 columns. The 

first column contains first index and the second column contains last 
index of the Run. This 2-D array is called Helper array. 
 

First index Last index 
1 5 
6 8 
9 15 

 

If any Run is a reversed order, Reverse function will be called, For 
example, Run 3 is a reversed array ,so it will be reversed to be  
 

1 2 3 4 5 6 7 
Run3 (9-15) 

 

Reverse Runs can be done at merge time. 
Figure 8 presents the flowchart of looking for runs process and 

store Runs to Helper array. 
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Figure 8: Find Runs Flowchart 

 

After finding all Runs in the array and storing them in Helper array, 
Divide and Conquer technique will apply on Helper array not like 
merge sort algorithm which applies divide and conquer on all given 
array.  
Figure 9 shows how previous array will divide and merge  
 

1 2 3 4 5 3 4 9 1 2 3 4 5 6 7 
Run1 (1-5) Run2(6-8) Run3 (9-15) 

 

 

 

 

 

 

1 2 3 4 5 3 4 9 
Run1 (1-5) Run2(6-8) 

1 2 3 4 5 6 7 
Run3 (9-15) 

3 4 9 
Run2(6-8) 

1 2 3 4 5 
Run1 (1-5) 
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Figure 9: Divide-Runs algorithm Example 

 

The following figure presents the flowchart for divide Runs using 
Helper array. 
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When divide Runs reaches to 1 run in divide left and divide right 
process, merge two sorted array works. 

The following figure presents the flowchart for merge algorithm. 
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Define Merge array 
C=A.len + B.Len 

Head(A)<=

Head(B) 
Put head(A) 

to C 
Put head(B) 

to C 

A empty B empty 

Figure 10: Divide Runs Flowchart 
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3.2.Design Parallel DRS Algorithm 
 

Sorting is a difficult problem to parallelize [6].Since the size of 
unsorted set is decreasing with every iteration, it is difficult to 
parallelize it. For example, it is difficult to parallelize insertion sort, 
selection sort, and bubble sort. However, the better suited for 
parallelization is a recursive sort algorithms. 
Divide-Runs sort algorithm is a recursive algorithm that takes 

advantage of divide and conquer   recursively. It can apply on 
parallel as efficient as merge sort. 

 

3.2.1. Design Parallel Algorithm 
 

The parallel version of the merge sort is shown in Figure 12 for 
four cores as implemented in parallel Sort method of 
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Figure 12: Parallel merge sort with 8 threads 
 

The same model will be use to design Parallel DRS algorithm with 
change in finding Runs and creating Helper Array as shown in 
Figure 13. 
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In 
thi
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del, Main CPU uses to call available CPUs to find Runs Using 
parallel Processing. Then it merges founded Runs in one helper 
array. After find Runs and create Helper array, Root CPU divides 
the unsorted array into two sub-array than distributed them to two 
CPUs. Every CPU divides sub-array to two sub-array. This 
process continues until the number of unsorted sub-array reaches 
to desire number of parallel. Then, each CPU sorts one unsorted 
sub-array independently in parallel. Once, each CPU is done 
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sorting their parts, the process of merging starts. Each parent CPU 
merges the two sorted subsections from its children threads. As the 
final step, the Root CPU merges two subsections from its children 
threads and produces the sorted array. 
 

3.3. Analysis Algorithm 
 

To ensure the execution time of an algorithm, three cases should 
be concerned. 

 

3.3.1.Worse case  
 

In DRS, the worst case appears when number of Runs reach 
Maximum number in array. In Array with 10 elements, number of 
Runs may be 1,2,3,4 ,or 5.No more Runs in array with 10 elements 
than 5.This happened when all Runs have only two elements.  
When Run have 2 elements the helper array contains n/2 Runs  

For that, the length of Helper array m=n/2. 
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Divide-Runs Algorithm contains two parts FindRuns which cost 
O(n) 
and 

recur
sion 

Divid
e-

Runs. 
To find the general recursion form, we have to calculate cost for 

every line as follows: 
 

T (n) =T (m/2) + T (m/2) + n 
=2T (m/2) + n 
=2T (n/4) + n 
Rewrite merge sort recurrence as: 
 

T(n) = {

𝑂(𝑛)                      𝑖𝑓  𝑅 = 1
                           

2𝑇 (
𝑛

4
) + 𝑐𝑛          𝑖𝑓  𝑅 > 1

 

 

By using the extended master theorem in case 3: 

Algorithm 3: Divide-Runs ( A[] ,Aux[], RunsDivid[,],left , right) 
If  left <  right  
         middle = ( left + right ) / 2                                             ___ 1 
        Divide-Runs ( A , aux, RunsDivid,  left  ,  middle  )              ___ T(m/2) 
        Divide-Runs ( A , aux, RunsDivid,  middle +1 ,  right )          ___ T(m/2) 
        Merge ( A  aux, RunsDivid [left, 0], RunsDivid [middle, 1],        
             RunsDivid [right, 1])                                                  ___ O(n) 
End  
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when a = 2; b = 4; k = 1; p = 0 
we get: 
T(n)=O(nlog n) 

 

3.3.2. Best case  
 

In DRS algorithm, if Runs is 1, it considers to be the best case 
because there is no need to use divide and merge functions. Two 
scenarios appear when number of Runs is 1. First scenario, if target 
array is already sorted decreasing .for example: 
 

1 2 3 4 5 6 7 7 8 9 
 

In this case, DRS algorithm looking for Runs which is one in n 
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time which is the same number of target elements . Either the 
second scenario, if the Runs is 1 and it sorted Ascending. 

9 8 7 7 6 5 4 3 2 1 
 
In this case, Reverse Function is called which cost n/2 to reverse 

array.so that, total time complexity for find Runs and reverse array 
as following : 
O(n) = n + n/2 = 3n/2 
Which is O(n) = n. 

 

3.3.3. Average case 
 

In general, the average case running time is considered as bad as 
the worst case and analysis as same way as the worst case. 
 

3.4. Sequential DRS Algorithm Implementation  
 

Our code is implemented in c#. It contains the following variables: 
I. MinRuns which determines the minimum Run size .Algorithm 

can be implemented without determine it ,However it enhance 
performance of algorithm. The chosen minimum size is 8 
elements. 

II. Divide which is a helper array. It is 2D array with 2 columns. 
Numbers of row in Divide-Runs determine by divide numbers 
of element by MinRuns. 
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III. D
ivi
dC
ou
nt 

wh
ich 
hel
ps 
to 

det
er

mine Divide-Runs current row and length of Helper array. 
IV. Axillary array which has the same size of main array to help 

to rearrange data in merge function. 
The implementation also contains three main functions as following: 

I. FindRuns function: This function token from Natural merge 
sort algorithms. However, it modified to store first index and 
last index of Run to Divide-Runs array. This function calls 
two other function to help in find and format Runs. If the 
Runs length less than MinRun, elements added to meet 
minimum length and Insertion sort uses to sort this Run. In 
addition, if Run sorted opposite of demand, Reverse function 
uses to reverse Run. 

 

Algorithm 4:  FindRuns ( A ,Aux , RunsDivid[,]) 
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int acendOrder = 0; 
int descOrder = 0; 
int right = 0, mid = 0; 
int DividCount = 0; 
for (int i = 0; i <= numbers.Length - 1; i++) 
   { 
      if (i == numbers.Length - 1) 
          { 
 
             if (right < numbers.Length && descOrder == 1) 
                { 
 
                   Array.Reverse(numbers, mid, right - mid + 1); 
                   Divid[DividCount,0] = mid; 
                   Divid[DividCount,1] = right; 
                   DividCount++; 
                 } 
              else if (right < numbers.Length) 
                 { 
                   Divid[DividCount, 0] = mid; 
                   Divid[DividCount, 1] = right; 
                   DividCount++; 
                 } 
                 break; 
            } 
         else if (acendOrder == 0 && descOrder == 0) 
            { 
 
               if (numbers[i] <= numbers[i + 1] && i + 1 >= numbers.Length - 
1) 
                 { 
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                   right++; 
                   Divid[DividCount, 0] = mid; 
                   Divid[DividCount, 1] = right; 
                   DividCount++; 
                   mid = right + 1; 
                   right++; 
                   acendOrder = 0; 
                   descOrder = 0; 
                  } 
                else if (numbers[i] <= numbers[i + 1]) 
                  { 
                    acendOrder = 1; 
                    right++; 
                  } 
                 else if (numbers[i] >= numbers[i+1] && i+1 >= 
numbers.Length-1) 
                    { 
                        right++; 
                        Array.Reverse(numbers, mid, right - mid + 1); 
                        Divid[DividCount, 0] = mid; 
                        Divid[DividCount, 1] = right; 
                        DividCount++; 
                        mid = right + 1; 
                        right++; 
                        acendOrder = 0; 
                        descOrder = 0; 
                    } 
                    else 
                    { 
                        descOrder = 1; 
                        right++; 
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                    } 
                } 
                else if (acendOrder == 1) 
                { 
                  if (numbers[i] <= numbers[i + 1] && i + 1 >= numbers.Length 
- 1) 
                    { 
                        right++; 
                        Divid[DividCount, 0] = mid; 
                        Divid[DividCount, 1] = right; 
                        DividCount++; 
                        mid = right + 1; 
                        right++; 
                        acendOrder = 0; 
                        descOrder = 0; 
                    } 
 
                    else if (numbers[i] <= numbers[i + 1]) 
                        right++; 
                    else 
                    { 
                        //********** 
                        if (right - mid == 1) 
                        { 
                            int tmp = numbers[i]; 
                            numbers[i] = numbers[i + 1]; 
                            numbers[i + 1] = tmp; 
                            if (numbers[i - 1] > numbers[i]) 
                            { 
                                tmp = numbers[i - 1]; 
                                numbers[i - 1] = numbers[i]; 
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                                numbers[i] = tmp; 
                            } 
                            right++; 
                        } 
 
                        //************ 
                        else 
                        { 
                            Divid[DividCount, 0] = mid; 
                            Divid[DividCount, 1] = right; 
                            DividCount++; 
                            mid = right + 1; 
                            right++; 
                            acendOrder = 0; 
                            descOrder = 0; 
                        } 
                    } 
                } 
 
 
 
 
                else 
                { 
 
                  if (numbers[i] >= numbers[i + 1] && i + 1 >= numbers.Length 
- 1) 
                    { 
                        right++; 
                        Array.Reverse(numbers, mid, right - mid + 1); 
                        Divid[DividCount, 0] = mid; 
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                        Divid[DividCount, 1] = right; 
                        DividCount++; 
                        mid = right + 1; 
                        right++; 
                        acendOrder = 0; 
                        descOrder = 0; 
                    } 
                    else if (numbers[i] >= numbers[i + 1]) 
                    { 
                        right++; 
 
                    } 
                    else 
                    { 
                        if (right - mid == 1) 
                        { 
                            int tmp = numbers[i]; 
                            numbers[i] = numbers[i + 1]; 
                            numbers[i + 1] = tmp; 
                            if (numbers[i - 1] < numbers[i]) 
                            { 
                                tmp = numbers[i - 1]; 
                                numbers[i - 1] = numbers[i]; 
                                numbers[i] = tmp; 
                            } 
                            right++; 
                        } 
                        else 
                        { 
                            Array.Reverse(numbers, mid, right - mid + 1); 
                            Divid[DividCount, 0] = mid; 
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II. D
ivi
de
-

Ru
ns 
Al
go
rith
m: 
Thi

s 
fun

ction as same as classic merge sort algorithm which uses 
Divide and conquer technique .However, it  divides helper 
array rather than main array .In our proposed algorithm we 
add one more parameter which represent Helper array and 
other parameters are the same. Moreover, all code as same 
as merge sort algorithm accept call Merge algorithm which 
calls data in helper array. Data in Helper array represent 
indexes in Main array .Our technique assumes to save 
indexes in array and divides elements according to Runs not 
like merge sort algorithm which divides array according to 

                            Divid[DividCount, 1] = right; 
                            DividCount++; 
                            mid = right + 1; 
                            right++; 
                            acendOrder = 0; 
                            descOrder = 0; 
                        } 
                    } 
                } 
 
 
            } 
            
 
            if (DividCount > 1) 
                DividRuns(numbers, aux, Divid, 0, DividCount - 1); 
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elements. 
 

 

 

III. M

erge algorithm: The merge algorithm plays a critical role in 

t

h

e

 

m

erge sort algorithm as well as Divide-Runs sort algorithm. 

This function merges two sorted array into one in linear time 

and linear space. There is no change on Merge 

technique .The idea in calling Merge by index in Runs. 

 

 
 
 

Algorithm 5: Divide-Runs ( A[] ,Aux[], RunsDivid[,],left , right) 
If  left <  right  
         middle = ( left + right ) / 2 
        Divide-Runs ( A , aux, RunsDivid,  left  ,  middle  ) 
        Divide-Runs ( A , aux, RunsDivid,  middle +1 ,  right ) 
        Merge ( A  aux, RunsDivid [left, 0], RunsDivid [middle, 1],        
             RunsDivid [right, 1]) 
End  

Algorithm 6: Merge ( A[] ,B[]) 
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3.5.P
ar
all
el 
DR
S 
Al
go
rit
h
m 
Im
ple
me
nt
ati
on  

 

P
arallel Divide-Runs sort algorithm will implement using TPL in 
C#.TPL is based on the concept of a task, which represents an 
asynchronous operation. In some ways, a task resembles a thread 

C []=new empty 
   While A is not empty and B is not empty  
        If head(A) ≤ head(B)  
            append head(A) to C 
            drop the head of A 
        End 
        Else 
            append head(B) to C 
            drop the head of B 
        End 
   End 
   
     While A is not empty  
        append head(A) to C 
        drop the head of A 
     End 
 
     While B is not empty  
        append head(B) to C 
        drop the head of B 
     End 
 
    Return C[] 
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or ThreadPool work item, but at a higher level of abstraction. The 
term task parallelism refers to one or more independent tasks 
running concurrently. 
 Parallel Divide-Runs algorithm have same variables as sequential 

Divide-Runs with adding some other variables which help in parallel 
processing. One of these variables is _maxParallelDepth . This 
variable is dynamically determined depth of parallel processing. The 
Algorithm 7 returns number of maximum parallel depth which uses 
in specific PC. 
 

 

 

 

 

 

 

 

Afte
r 

deter
mine 

maximum parallel depth, we are going to create as many threads as 

Algorithm 7: DetermineMaxParallelDepth() 
 
const int MaxTasksPerProcessor = 1; 
 int maxTaskCount = Environment.ProcessorCount * 
MaxTaskPerProcessor; 
 int icheck = (int)Math.Log(maxTaskCount, 2); 
 
Return (int) Math.Log(maxTaskCount, 2); 
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the number of processors (or cores). So we keep making the 
recursive method calls. It is very similar to the standard 
implementation except adding parallel depth. We use a parallel 
depth for every recursive method call until there is no more 
available processor cores. After that, we use the sequential 
algorithm. Algorithm 8 Shows how parallel Divide-Runs algorithm 
implemented. 
Algorithm 8: Parallel_Divide-Runs( int[] array, int[] aux, int[,] Divid, int 
iStart, int iEnd, int recursionDepth) 
         if (iStart >= iEnd) 
         return; 
  int middle = (iStart + iEnd) / 2; 
  if (recursionDepth <= _maxParallelDepth) 
      {                 
        Parallel.Invoke( 
          () => DivideRuns (array, aux, Divid, iStart, middle, recursionDepth + 
1), 
          () =>  DivideRuns (array,aux, Divid, middle+1, iEnd,recursionDepth + 
1) 
             );            
       } 
     else 
       { 
          DivideRuns (array, aux, Divid, iStart, middle, recursionDepth + 1); 
          DivideRuns (array, aux, Divid, middle + 1, iEnd, recursionDepth + 1); 
        } 
MergeTechnique.Merge(array , aux , Divid [ iStart, 0 ], Divid[ middle , 1 ], 
                                             Divid[iEnd, 1]); 
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3.5.1.Advantages and disadvantages 
 Advantages of DRS 
 DRS algorithm has better performance than other algorithms 

that use natural sorted technique because it does not use 
stack .In addition it takes advantage of natural sorted sub 
array which not need to operate more sort on array. It takes 
only O(n) when array sorted. 

 Reversed array is a worst case in most sort algorithms 
however in DRS reversed array takes only O(n) to sort. 

 It takes O(nlogn) in average and worse case and his 
Performance is better compared to other algorithms. 

 The divide-and-conquer nature of DRS algorithm makes it 
very convenient for parallel processing. By using Divide 
technique, it can act  to any type of parallel architecture or 
distributed system. 

 Merge sort usually uses in external sort because of merge 
technique which can apply on separated elements. Like 
Merge sort, DRS algorithm can apply perfectly on external 
sort because it takes divide and merge techniques from 
merge sort. 

 Divide-Runs is a stable, comparison, recursive, and adaptive 
sort algorithm. 

3.5.2. Disadvantages of DRS 
As in most Merge algorithms , DRS algorithm need more space to 

apply Merge technique .It takes O(n) complexity in space whereas, 
most algorithms take only O(1) space complexity. 
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4. Experiment and Result Analysis 
 

This chapter describes performance metrics and the evaluation of 
experiment results. The goal of the evaluation is to show the 
efficiency of the proposed algorithm compared to those available in 
the literature. Our focus was on the measuring  of the algorithm in 
term of Time complexity. 
4.1. Experiment Setting 
 

Benchmark algorithms and proposed algorithm was implemented in 
C# MS Visual studio 2017 using Console App (.Net Framework 4.6) 
and The Task Parallel Library (TPL) for parallel processing. The 
machine used for performance evaluation is Lenovo laptop with 
256MB of SSD disk storage. It has an Intel(R) Core i7-3632QM 
CPU which works at 2.20GHz. The CPU has four cores that can 
deliver 8 threads via Intel hyper-Threading Technology.The Chip on 
mainboard has one DDR3 memory controllers which provides 
800MHz memory clock frequency. The capacity of main memory is 
8GB. 
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4.2. Performance Metrics 
 

The main measured metric to evaluate the proposed algorithm is 
Execution time (ET).This metric was used in literature to evaluate 
the efficiency of algorithms, such as [15] [26] [6] [8]. 
Integer numbers have been generated randomly and used for the 

experiments. Statistical analysis for 100 samples generated 
randomly was conducted for each dimension of input, starting from 
the input set of 1 million elements and increasing the size of the 
task 100,000 elements for each test to 2 million elements. The 
number of samples was chosen as 100 since it is a standard 
statistical number to examine proposed methods in benchmark tests 
[58]. Average of execution for 100 samples calculate by equation: 
Average of ET = 𝑆𝑢𝑚 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
   

The experiment is conducted in sequential with three scenarios, 
which are  
(1) When elements are Sorted (one Run),  
(2) When elements are random and 
(3) Elements with 10,100 and 1000 Runs.  
These Scenarios will compare with different dataset size. For 
evaluating parallel Divide-Runs algorithm, it will be compared with 
Merge sort in different scenarios and different dataset size too. 
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4.3.Result Evaluation 
 

4.3.1 Sequential experiment 
 

Proposed algorithm is compared sequentially with Timsort and α-
stack algorithms in different situation as shown in table 3: 
 

K TimSort α-Stack DRSA 
1 7.24 7.32 7.34 
10 122.46 122.53 108.91 
100 232.62 232.01 198.16 
1000 347.52 346.58 289.74 

Random 839.95 837.16 644.00 
 

Table 3: COMPARING BETWEEN TIMSORT, Α-STACK, AND DRS ALGORITHMS 

i. When all elements are random Figure 14 shows the 
enhancement and the preference of proposed algorithm. The 
results shows decreasing in the execution time with 29.99% 
comparing with α-stack and 30.43% comparing with Timsort. 
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Sample Size 

   

 

Figure 14: Sorting time comparisons (Random Elements) 

 

 

 

 

ii. When elements are sorted  .Figure 15 shows convergence 
between proposed algorithm and benchmark algorithms 
because all of them use the same technique to find Runs and 
all of them have one Run when elements are sorted.  
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Figure 15: Sorting time comparisons (Sorted Elements) 

 

 

iii. When dataset used sequences of  10,100,1000 Runs, Table 
3 shows the enhancement of DRS algorithm according to 
numbers of Runs comparing with Benchmark algorithms. 

 

Also, Figure 16,17, and 18 show the preference of proposed 
algorithm 
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Figure 16: Sorting time comparisons (10 Runs) 

 

 

Figure 17: Sorting time comparisons (100 Runs) 
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Figure 18: Sorting time comparisons (1000 Runs) 

 

4.3.2 Parallel Experiment 
 

Proposed algorithm is compared parallel with Merge Sort when inputs 
are sorted and random as shown in table 4. 
 

 
P-DRS P-MergeSort 

Sorted 20.70 140.14 
Random 173.38 241.18 

Table 4: Compare between Merge sort and DRS 
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Sample Size 
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1. When all elements are random Figure 19 shows the 

enhancement and the preference of proposed algorithm. The 
results shows decreasing in the execution time with 39.1 % 
comparing with merge sort. In addition, we notice that when 
Runs is less , the decreasing of execution time became better. 

 

 

 

Figure 19: Parallel Sorting time comparisons (Random Elements) 
 

 

2. When elements are sorted .Figure 20 shows the proposed 
algorithm is much better than merge sort because proposed 
algorithm is adaptive algorithm and it takes only O(n) time whereas 
merge sort takes O(nlogn). 
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Figure 20: Parallel sorting time comparisons (Sorted Elements) 

 

 

4.3.3 Additional Experiments 
 

For another way of evaluation, testing were used 100 samples 
generated at random for the task size from 100 to 10,000 000 
elements, increasing the size of sorted array ten times in the 
following experiments.  
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Average of ET 
    # of elements α-Stack DivideRuns TimSort Grand Total 

10 0 0 0 0 
100 0 0 0 0 
1000 0 0 0 0 
10000 2.05 2.02 2.05 2.04 
100000 33.78 25.15 33.33 30.75333333 
1000000 396.32 297.71 393.66 362.5633333 
10000000 4443.04 3422.53 4456.76 4107.443333 
Grand Total 696.455714 535.344285 697.971428 643.257142 

Table 5: Sequential Sorting time comparisons (Random 10M Elements) 

Average of ET 
    # of elements α-Stack DivideRuns TimSort Grand Total 

10 0 0 0 0 
100 0 0 0 0 
1000 0 0 0 0 
10000 0 0 0 0 
100000 0 1 0 0.333333333 
1000000 3.03 10.42 3.04 5.496666667 
10000000 36.75 108.41 36.8 60.65333333 
Grand Total 5.682857143 17.1185714 5.69142857 9.49761904 

Table 6: Sequential Sorting time comparisons (Sorted 10M Elements) 

Average of ET 
    # of elements α-Stack DivideRuns TimSort Grand Total 

10 0.01 0.01 0.01 0.01 
100 0.04 0 0.04 0.026666667 
1000 0 0 0 0 
10000 0 0 0.01 0.003333333 
100000 5.95 5.1 5.26 5.436666667 
1000000 61.79 57.89 59.29 59.65666667 
10000000 632.38 598.07 592.95 607.8 
Grand Total 100.0242857 94.43857143 93.93714286 96.13333333 

Table 7: Sequential Sorting time comparisons (10Runs with 10M Elements) 
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Average of ET 
    # of elements α-Stack DivideRuns TimSort Grand Total 

10 0 0 0 0 
100 0 0 0 0 
1000 0 0 0 0 
10000 1.01 0.84 1.02 0.956666667 
100000 11.01 9.26 11.05 10.44 
1000000 113.44 99.49 111.05 107.9933333 
10000000 1121.06 1014.89 1134.95 1090.3 
Grand Total 178.0742857 160.64 179.7242857 172.8128571 

Table 8: Sequential Sorting time comparisons (100Runs with 10M Elements) 

Average of ET 
    # of elements α-Stack DivideRuns TimSort Grand Total 

10 0 0 0 0 
100 0 0 0 0 
1000 0 0.02 0.02 0.013333333 
10000 2.02 1.01 2.01 1.68 
100000 20.47 13.97 19.72 18.05333333 
1000000 170.79 141.18 167.51 159.8266667 
10000000 1646.94 1431.5 1660.71 1579.716667 
Grand Total 262.8885714 226.8114286 264.2814286 251.3271429 

Table 9: Sequential Sorting time comparisons (1000Runs with 10M Elements) 

Average of ET 
   # of elements ParallelDivide-Runs ParallelMergeSort Grand Total 

10 0.07 0.05 0.06 
100 0.02 0.01 0.015 
1000 0.02 0.03 0.025 
10000 1.05 1.2 1.125 
100000 9.66 13.32 11.49 
1000000 118.82 163.79 141.305 
10000000 1190.58 1656.82 1423.7 
Grand Total 188.6028571 262.1742857 225.3885714 

Table 10: Parallel Sorting time comparisons (Random 10M Elements) 
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Average of ET 
   # of elements ParallelDivide-Runs ParallelMergeSort Grand Total 

10 0.67 0.14 0.405 
100 0.06 0 0.03 
1000 0.01 0.03 0.02 
10000 0 0.53 0.265 
100000 2.15 9.61 5.88 
1000000 15.18 91.36 53.27 
10000000 137.51 1010.58 574.045 
Grand Total 22.22571429 158.8928571 90.55928571 

Table 11: Parallel Sorting time comparisons (Sorted 10M Elements) 

 

The following graphs show statistical analysis for 100 samples 
generated randomly was conducted for each dimension of input, 
starting from the input set of 1million elements and increasing the 
size of the task 1,000,000 elements for each test to 10 million 
elements. 
 

 

Figure 21: Sequential Sorting time comparisons (Random 1M to 10M Elements) 
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Figure 22: Sequential Sorting time comparisons (Sorted 1M to 10M Elements) 

 

Figure 23: Sequential Sorting time comparisons (10Runs 1M to 10M Elements) 

 

Figure 24: Sequential Sorting time comparisons (100Runs 1M to 10M Elements) 

 

Figure 25: Sequential Sorting time comparisons (1000Runs 1M to 10M Elements) 
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Figure 26: Parallel Sorting time comparisons (Random 1M to 10M Elements) 

 

Figure 27: Parallel Sorting time comparisons (Sorted 1M to 10M Elements) 

The following graphs show statistical analysis for 50 samples 
generated randomly was conducted for each dimension of input, 
starting from the input set of 1million elements and increasing the 
size of the task 100,000 elements for each test to 2 million 
elements. 

 

Figure 28: Sequential Sorting time comparisons (Random Elements 50 Samples) 
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Figure 29: Sequential Sorting time comparisons (Sorted Elements 50 Samples) 

 

Figure 30: Sequential Sorting time comparisons (10Runs Elements 50 Samples)

 
Figure 31: Sequential Sorting time comparisons (100Runs Elements 50 Samples) 

 

Figure 32: Sequential Sorting time comparisons (1000Runs Elements 50 Samples) 
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Figure 33: Parallel Sorting time comparisons (Random Elements 50 Samples) 

 

Figure 34: Parallel Sorting time comparisons (Sorted Elements 50 Samples) 
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5. Conclusion and Future work 
 

5.1. Conclusion  
 

In this study, a new natural merge sort algorithm called Divide-
Runs Sort algorithm (DRS) proposed. DRS algorithm is a 
comparison, stable, and adaptive algorithm which works recursively. 
DRS takes benefits from natural sub-ordered list call Runs as well 
as Divide and Conquer technique. DRS solves the best-case 
problem in merge sort ,and it solves parallel processing in natural 
merge sort algorithms.  
The results evaluation indicates that DRS is an efficient algorithm 

and decreasing time complexity in execution time to 30% comparing 
with benchmarks in sequential processing and decreasing execution 
time to 39% in parallel processing. Thus, the proposed algorithm is 
more efficient than the previous merge sort algorithms because it 
takes advantage of two parts of Merge (original merge sorting and 
Natural Merge sorting) 
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5.2. Future work 
 

For future work, we are planning to implement DRS parallel sort 
algorithm in GPU and Distributed system. The implementation will 
compare with [26] and it will take the same model .Nowadays, 
Merge sort is usually used in external sort .we are planning to 
implement DRS on external sort model that shows in [27].We 
expect DRS algorithm will be more efficient in parallel, distributed 
and external sorting 
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Appendix A 
 
Additional Tables and Graphs 
 

The following tables show experiment result between DRS 
algorithm and benchmarks which represent in graphs in chapter 4. 
 

Average of ET 
    # of elements α-Stack DivideRuns TimSort Grand Total 

1000000 549.51 417.48 549.51 505.5 
1100000 592.35 462.03 593.47 549.2833333 
1200000 649.89 505.23 651.33 602.15 
1300000 713.17 552.31 714.22 659.9 
1400000 772.16 598.21 774.61 714.9933333 
1500000 830.74 641.43 837.97 770.0466667 
1600000 893.41 688.14 899.64 827.0633333 
1700000 955.05 732.85 957.93 881.9433333 
1800000 1015.16 779.59 1021.01 938.5866667 
1900000 1094.32 834.81 1096.32 1008.483333 
2000000 1142.96 871.93 1143.49 1052.793333 
Grand Total 837.16 644.00 839.95 773.7039394 

Table 12 : Sequential Sorting time comparisons (Random Elements) 
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Average of ET 
    # of elements α-Stack DivideRuns TimSort Grand Total 

1000000 4.65 4.88 4.71 4.746666667 
1100000 5.24 5.19 5.21 5.213333333 
1200000 5.82 5.7 5.61 5.71 
1300000 6.38 6.23 6.36 6.323333333 
1400000 6.66 6.66 6.5 6.606666667 
1500000 7.33 7.32 7.46 7.37 
1600000 7.75 7.79 7.55 7.696666667 
1700000 8.51 8.65 8.47 8.543333333 
1800000 9.03 8.95 8.72 8.9 
1900000 9.37 9.55 9.42 9.446666667 
2000000 9.77 9.77 9.6 9.713333333 
Grand Total 7.32 7.34 7.24 7.30 

Table 13 : Sequential Sorting time comparisons (Sorted Elements) 

Average of ET 
    

# of elements α-Stack DivideRuns TimSort 
Grand 
Total 

1000000 81.1 71.79 81.45 78.11 
1100000 89.15 78.84 88.72 85.57 
1200000 96.71 87.1 96.67 93.49 
1300000 104.92 93.8 104.46 101.06 
1400000 114.21 102.03 114.94 110.39 
1500000 120.92 108.3 121.9 117.04 
1600000 130.83 116.03 131.03 125.96 
1700000 138.37 123.41 140.17 133.98 
1800000 146.08 131.04 147.5 141.54 
1900000 154.98 139.67 158.19 150.95 
2000000 170.58 146 162.04 159.54 
Grand Total 122.53 108.91 122.46 117.97 

Table 14: Sequential Sorting time comparisons (10 Runs) 
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Average of ET 

    # of elements α-Stack DivideRuns TimSort Grand Total 
1000000 155.38 131.81 155.38 147.5233333 
1100000 169.1 145.2 170.05 161.45 
1200000 186.16 158.45 183.81 176.14 
1300000 201.69 171.83 200.07 191.1966667 
1400000 218.31 184.01 215.12 205.8133333 
1500000 232.57 197.99 237.36 222.64 
1600000 247.5 211.66 249.83 236.33 
1700000 262.49 224.51 264.61 250.5366667 
1800000 277.45 238.28 279.21 264.98 
1900000 292.62 251.37 293.71 279.2333333 
2000000 308.88 264.67 309.69 294.4133333 
Grand Total 232.01 198.16 232.62 220.9324242 

Table 15: Sequential Sorting time comparisons (100 Runs) 

 

Average of ET 
    # of elements α-Stack DivideRuns TimSort Grand Total 

1000000 234.64 192.98 234.92 220.8466667 
1100000 254.14 213.09 254.43 240.5533333 
1200000 276.84 231.09 278.07 262 
1300000 300.01 250.18 300.39 283.5266667 
1400000 322.69 269.99 324.69 305.79 
1500000 345.01 288.68 349.31 327.6666667 
1600000 367.71 307.97 368.15 347.9433333 
1700000 390.04 327.01 391.71 369.5866667 
1800000 420.82 351.64 423.35 398.6033333 
1900000 438.92 367.48 437.15 414.5166667 
2000000 461.59 387.06 460.52 436.39 
Grand Total 346.58 289.74 347.52 327.9475758 

Table 16: Sequential Sorting time comparisons (1000 Runs) 

 



86 
 
 

Average of ET 
   

# of elements 
ParallelDivide-
Runs ParallelMergeSort Grand Total 

1000000 118.63 161.35 139.99 
1100000 121.96 165.24 143.6 
1200000 139.74 190.9 165.32 
1300000 153.84 211.16 182.5 
1400000 160.27 220.62 190.445 
1500000 176.14 242.34 209.24 
1600000 178.27 249.71 213.99 
1700000 188.31 263.9 226.105 
1800000 213.09 301.17 257.13 
1900000 224.66 318.62 271.64 
2000000 232.32 327.93 280.125 
Grand Total 173.3845455 241.1763636 207.2804545 

Table 17: Parallel Sorting time comparisons (Random Elements) 

Average of ET 
   

# of elements 
ParallelDivide-
Runs ParallelMergeSort Grand Total 

1000000 15.35 89.52 52.435 
1100000 16.81 99.02 57.915 
1200000 17.87 109.7 63.785 
1300000 19.07 119.98 69.525 
1400000 19.78 129 74.39 
1500000 21.46 138.73 80.095 
1600000 19.98 150.18 85.08 
1700000 21.41 155.13 88.27 
1800000 22.23 168.52 95.375 
1900000 24.82 176.65 100.735 
2000000 28.96 205.08 117.02 
Grand Total 20.70363636 140.1372727 80.42045455 

Table 18: Parallel Sorting time comparisons (Sorted Elements) 
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The following graphs show experiment with change of α in α-stack 
algorithm (α=2) 
 

 

Figure 35: Sequential Sorting time comparisons (Random Elements with α=2) 

 

Figure 36: Sequential Sorting time comparisons (Sorted Elements with α=2) 

 

Figure 37: Sequential Sorting time comparisons (10Runs Elements with α=2) 
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Figure 38: Sequential Sorting time comparisons (100Runs Elements with α=2) 

 

Figure 39: Sequential Sorting time comparisons (1000Runs Elements with α=2) 

 

Figure 40: Parallel Sorting time comparisons (Random Elements with α=2) 
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Appendix B 

 
Sequential Divide-Runs Algorithm Code 
 

DRS.cs 

 

 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
namespace RunsMerge 
{ 
    class DRS 
    { 
      static public void FindRuns(int[] numbers, int[] aux, int[,] Divid) 
        { 
            int acendOrder = 0; 
            int descOrder = 0; 
            int right = 0, mid = 0; 
            int DividCount = 0; 
 
            for (int i = 0; i <= numbers.Length - 1; i++) 
            { 
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                if (i == numbers.Length - 1) 
                { 
                    if (right < numbers.Length && descOrder == 1) 
                    { 
                     Array.Reverse(numbers, mid, right - mid + 1); 
                     Divid[DividCount,0] = mid; 
                     Divid[DividCount,1] = right; 
                     DividCount++; 
                    } 
                    else 
                        if (right < numbers.Length) 
                    { 
                        Divid[DividCount, 0] = mid; 
                        Divid[DividCount, 1] = right; 
                        DividCount++; 
                    } 
                    break; 
                } 
                else if (acendOrder == 0 && descOrder == 0) 
                { 
                    if (numbers[i] <= numbers[i + 1] && i + 1 >= numbers.Length - 1) 
                    { 
                        right++; 
                        Divid[DividCount, 0] = mid; 
                        Divid[DividCount, 1] = right; 
                        DividCount++; 
                        mid = right + 1; 
                        right++; 
                        acendOrder = 0; 
                        descOrder = 0; 
                    } 
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                    else if (numbers[i] <= numbers[i + 1]) 
                    { 
                        acendOrder = 1; 
                        right++; 
                    } 
                    else if (numbers[i] >= numbers[i + 1] && i + 1 >= numbers.Length 
- 1) 
                    { 
                        right++; 
                        Array.Reverse(numbers, mid, right - mid + 1); 
                        Divid[DividCount, 0] = mid; 
                        Divid[DividCount, 1] = right; 
                        DividCount++; 
                        mid = right + 1; 
                        right++; 
                        acendOrder = 0; 
                        descOrder = 0; 
                    } 
                    else 
                    { 
                        descOrder = 1; 
                        right++; 
                    } 
                } 
                else if (acendOrder == 1) 
                { 
                    if (numbers[i] <= numbers[i + 1] && i + 1 >= numbers.Length - 1) 
                    { 
                        right++; 
                        Divid[DividCount, 0] = mid; 
                        Divid[DividCount, 1] = right; 
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                        DividCount++; 
                        mid = right + 1; 
                        right++; 
                        acendOrder = 0; 
                        descOrder = 0; 
                    } 
                    else if (numbers[i] <= numbers[i + 1]) 
                        right++; 
                    else 
                    { 
                        //********** 
                        if (right - mid == 1) 
                        { 
                            int tmp = numbers[i]; 
                            numbers[i] = numbers[i + 1]; 
                            numbers[i + 1] = tmp; 
 
                            if (numbers[i - 1] > numbers[i]) 
                            { 
                                tmp = numbers[i - 1]; 
                                numbers[i - 1] = numbers[i]; 
                                numbers[i] = tmp; 
                            } 
                            right++; 
 
 
                        } 
 
                        //************ 
                        else 
                        { 
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                            Divid[DividCount, 0] = mid; 
                            Divid[DividCount, 1] = right; 
                            DividCount++; 
                            mid = right + 1; 
                            right++; 
                            acendOrder = 0; 
                            descOrder = 0; 
                        } 
                    } 
                } 
                else 
                { 
                    if (numbers[i] >= numbers[i + 1] && i + 1 >= numbers.Length - 1) 
                    { 
                        right++; 
                        Array.Reverse(numbers, mid, right - mid + 1); 
                        Divid[DividCount, 0] = mid; 
                        Divid[DividCount, 1] = right; 
                        DividCount++; 
                        mid = right + 1; 
                        right++; 
                        acendOrder = 0; 
                        descOrder = 0; 
                    } 
                    else if (numbers[i] >= numbers[i + 1]) 
                    { 
                        right++; 
                    } 
                    else 
                    { 
                        if (right - mid == 1) 
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                        { 
                            int tmp = numbers[i]; 
                            numbers[i] = numbers[i + 1]; 
                            numbers[i + 1] = tmp; 
                            if (numbers[i - 1] < numbers[i]) 
                            { 
                                tmp = numbers[i - 1]; 
                                numbers[i - 1] = numbers[i]; 
                                numbers[i] = tmp; 
                            } 
                            right++; 
                        } 
                        else 
                        { 
                            Array.Reverse(numbers, mid, right - mid + 1); 
                            Divid[DividCount, 0] = mid; 
                            Divid[DividCount, 1] = right; 
                            DividCount++; 
                            mid = right + 1; 
                            right++; 
                            acendOrder = 0; 
                            descOrder = 0; 
                        } 
                    } 
                } 
            } 
           if (DividCount > 1) 
                DividRuns(numbers, aux, Divid, 0, DividCount - 1); 
        } 
        public static void DividRuns(int[] array, int[] aux, int[,] Divid, int left, int right) 
        { 
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            if (left < right) 
            { 
                int middleIndex = (left + right) / 2; 
                DividRuns(array, aux, Divid, left, middleIndex); 
                DividRuns(array, aux, Divid, middleIndex + 1, right); 
                Merge(array, aux, Divid[left, 0], Divid[middleIndex, 1], Divid[right, 1]); 
            } 
        } 
        private static void Merge(int[] array, int[] aux, int leftIndex, int middleIndex, 
int right) 
        { 
            int rightIndex = middleIndex + 1; 
            int auxIndex = leftIndex; 
            int start = leftIndex; 
            int num_elements = (right - leftIndex + 1); 
            while (leftIndex <= middleIndex && rightIndex <= right) 
            { 
                if (array[leftIndex] <= array[rightIndex]) 
                { 
                    leftIndex++; 
                    start++; 
                    num_elements--; 
                    auxIndex++; 
                } 
                else 
                    break; 
            } 
            while (leftIndex <= middleIndex && rightIndex <= right) 
            { 
                if (array[leftIndex] <= array[rightIndex]) 
                { 
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                    aux[auxIndex] = array[leftIndex++]; 
                } 
                else 
                { 
                    aux[auxIndex] = array[rightIndex++]; 
                } 
                auxIndex++; 
            } 
            while (leftIndex <= middleIndex) 
            { 
                aux[auxIndex] = array[leftIndex++]; 
                auxIndex++; 
            } 
            while (rightIndex <= right) 
            { 
                aux[auxIndex] = array[rightIndex++]; 
                auxIndex++; 
            } 
            Array.Copy(aux, start, array, start, num_elements); 
        } 
    } 
} 
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Appendix C 

 
Parallel Divide-Runs Algorithm Code 
 

ParallelRunsMerge.cs 
 

using System; 
using System.Collections.Generic; 
using System.Diagnostics; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
namespace ParallelRunsMerge 
{ 
    class ParallelRunMerge2 
    { 
        private static int _maxParallelDepth; 
        protected static int DetermineMaxParallelDepth() 
        { 
            // const int MaxTasksPerProcessor = 8; 
            const int MaxTasksPerProcessor = 1; 
            int maxTaskCount = Environment.ProcessorCount * 
MaxTasksPerProcessor; 
            int icheck = (int)Math.Log(maxTaskCount, 2); 
            return (int)Math.Log(maxTaskCount, 2); 
        } 
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        public static void MainTask(int[] numbers) 
        { 
            //Find Runs First RunMerge 
            int[] aux = new int[numbers.Length]; 
            int[,] Divid = new int[numbers.Length / 8 + 10, 2]; 
            int dividCountNo = numbers.Length / 8; 
            dividCountNo = dividCountNo / 6 + 2; 
            int ParallelNumber = (numbers.Length - 1) / 6; 
            int[,] Divid1 = new int[dividCountNo, 2]; 
            int[,] Divid2 = new int[dividCountNo, 2]; 
            int[,] Divid3 = new int[dividCountNo, 2]; 
            int[,] Divid4 = new int[dividCountNo, 2]; 
            int[,] Divid5 = new int[dividCountNo, 2]; 
            int[,] Divid6 = new int[dividCountNo, 2]; 
 
            Task<int> task1F = Task<int>.Factory.StartNew(() => { return 
FindRuns(numbers, Divid1, 0, ParallelNumber + 1); }); 
            Task<int> task2F = Task<int>.Factory.StartNew(() => { return 
FindRuns(numbers, Divid2, (1 * ParallelNumber) + 1, (2 * ParallelNumber) + 1); 
}); 
            Task<int> task3F = Task<int>.Factory.StartNew(() => { return 
FindRuns(numbers, Divid3, (2 * ParallelNumber) + 1, (3 * ParallelNumber) + 1); 
}); 
            Task<int> task4F = Task<int>.Factory.StartNew(() => { return 
FindRuns(numbers, Divid4, (3 * ParallelNumber) + 1, (4 * ParallelNumber) + 1); 
}); 
            Task<int> task5F = Task<int>.Factory.StartNew(() => { return 
FindRuns(numbers, Divid5, (4 * ParallelNumber) + 1, (5 * ParallelNumber) + 1); 
}); 
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            Task<int> task6F = Task<int>.Factory.StartNew(() => { return 
FindRuns(numbers, Divid6, (5 * ParallelNumber) + 1, numbers.Length); }); 
            int DividCount1 = task1F.Result; 
            int DividCount2 = task2F.Result; 
            int DividCount3 = task3F.Result; 
            int DividCount4 = task4F.Result; 
            int DividCount5 = task5F.Result; 
            int DividCount6 = task6F.Result; 
            for (int i = 0; i < DividCount1; i++) 
            { 
                Divid[i, 0] = Divid1[i, 0]; 
                Divid[i, 1] = Divid1[i, 1]; 
            } 
            int iCount = DividCount1; 
            for (int i = 0; i < DividCount2; i++) 
            { 
                Divid[i + iCount, 0] = Divid2[i, 0]; 
                Divid[i + iCount, 1] = Divid2[i, 1]; 
            } 
            iCount += DividCount2; 
            for (int i = 0; i < DividCount3; i++) 
            { 
                Divid[i + iCount, 0] = Divid3[i, 0]; 
                Divid[i + iCount, 1] = Divid3[i, 1]; 
            } 
            iCount += DividCount3; 
            for (int i = 0; i < DividCount4; i++) 
            { 
                Divid[i + iCount, 0] = Divid4[i, 0]; 
                Divid[i + iCount, 1] = Divid4[i, 1]; 
            } 
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            iCount += DividCount4; 
            for (int i = 0; i < DividCount5; i++) 
            { 
                Divid[i + iCount, 0] = Divid5[i, 0]; 
                Divid[i + iCount, 1] = Divid5[i, 1]; 
            } 
            iCount += DividCount5; 
            for (int i = 0; i < DividCount6; i++) 
            { 
                Divid[i + iCount, 0] = Divid6[i, 0]; 
                Divid[i + iCount, 1] = Divid6[i, 1]; 
            } 
            int DividCount = 0; 
            DividCount = DividCount1 + DividCount2 + DividCount3 + DividCount4 + 
DividCount5 + DividCount6; 
            int iDividArr = (DividCount - 1) / 2; 
            _maxParallelDepth = DetermineMaxParallelDepth(); 
            MergeSort(numbers, aux, Divid, 0, DividCount - 1, 1); 
          
        } 
        public static int FindRuns(int[] a, int[,] Divid, int lo, int hi) 
        { 
            Debug.Assert(lo < hi); 
            int DividCount = 0; 
            int minRun = 8; 
            int nRemaining = hi - lo; 
            while (lo < hi) 
            { 
                int runHi = lo + 1; 
                if (runHi == hi) 
                { 
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                    Divid[DividCount, 0] = lo; 
                    Divid[DividCount, 1] = (hi - 1); 
                    DividCount++; 
                    return DividCount; 
                } 
                // Find end of run, and reverse range if descending 
                if ((a[runHi++] < a[lo])) 
                { // Descending 
                    while (runHi < hi && (a[runHi] <= a[runHi - 1])) 
                        runHi++; 
                    Array.Reverse(a, lo, runHi - lo); 
                    // reverseRange(a, lo, runHi); 
                } 
                else 
                {                              // Ascending 
                    while (runHi < hi && (a[runHi] >= a[runHi - 1])) 
                        runHi++; 
                } 
 
                int runLen = runHi - lo; 
 
                // If run is short, extend to min(minRun, nRemaining) 
                if (runLen < minRun) 
                { 
                    int force = nRemaining <= minRun ? nRemaining : minRun; 
                    binarySort(a, lo, lo + force, lo + runLen); 
                    runLen = force; 
                } 
 
 
               Divid[DividCount, 0] = lo; 
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                Divid[DividCount, 1] = runLen + lo - 1; 
                DividCount++; 
                lo += runLen; 
                nRemaining -= runLen; 
            } 
            return DividCount; 
        } 
        
        public static void MergeSort(int[] array, int[] aux, int[,] Divid, int iStart, int 
iEnd, int recursionDepth) 
        { 
          
            if (iStart >= iEnd) 
                return; 
            int middle = (iStart + iEnd) / 2; 
            if (recursionDepth <= _maxParallelDepth) 
            { 
             Task task1 = new Task(() => MergeSort(array, aux, Divid, iStart, 
middle, recursionDepth + 1)); 
                Task task2 = new Task(() => MergeSort(array, aux, Divid, middle + 
1, iEnd, recursionDepth + 1)); 
 
                task1.Start(); 
                task2.Start(); 
                task1.Wait(); 
                task2.Wait(); 
            } 
            else 
            { 
                MergeSort(array, aux, Divid, iStart, middle, recursionDepth + 1); 
                MergeSort(array, aux, Divid, middle + 1, iEnd, recursionDepth + 1); 
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            } 
            MergeTechnique.Merge(array, aux, Divid[iStart, 0], Divid[middle, 1], 
Divid[iEnd, 1]); 
 
        } 
        public static void binarySort(int[] a, int lo, int hi, int start) 
        { 
            Debug.Assert(lo <= start && start <= hi); 
            if (start == lo) 
                start++; 
            for (; start < hi; start++) 
            { 
                int pivot = a[start]; 
 
                // Set left (and right) to the index where a[start] (pivot) belongs 
                int left = lo; 
                int right = start; 
                Debug.Assert(left <= right); 
                /* 
                 * Invariants: 
                 *   pivot >= all in [lo, left). 
                 *   pivot <  all in [right, start). 
                 */ 
                while (left < right) 
                { 
                    int mid = (left + right) / 2; 
                    if (pivot < a[mid]) 
                        right = mid; 
                    else 
                        left = mid + 1; 
                } 
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                int n = start - left;   
                switch (n) 
                { 
                    case 2: 
                        a[left + 2] = a[left + 1]; 
                        break; 
                    case 1: 
                        a[left + 1] = a[left]; 
                        break; 
                    default: Array.Copy(a, left, a, left + 1, n); break; 
                } 
                a[left] = pivot; 
            } 
        } 
    } 
} 
 

 

 

 

 

 

 

 


